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Abstract—Human-in-the-loop (HitL) robot deployment has
gained significant attention in both academia and industry as
a semi-autonomous paradigm that enables human operators
to intervene and adjust robot behaviors at deployment time,
improving success rates. However, continuous human monitoring
and intervention can be highly labor-intensive and impractical
when deploying a large number of robots. To address this
limitation, we propose a method that allows diffusion policies to
actively seek human assistance only when necessary, reducing
reliance on constant human oversight. To achieve this, we
leverage the generative process of diffusion policies to compute
an uncertainty-based metric based on which the autonomous
agent can decide to request operator assistance at deployment
time, without requiring any operator interaction during training.
Additionally, we show that the same method can be used for
efficient data collection for fine-tuning diffusion policies in order
to improve their autonomous performance. Experimental results
from simulated and real-world environments demonstrate that
our approach enhances policy performance during deployment
for a variety of scenarios.

I. INTRODUCTION

Human-in-the-Loop (HitL) operation is a paradigm where
a human operator can intervene and assist a robot during
deployment. This paradigm is seeing increasing adoption in
cases where robots must continue to operate adequately even
in corner cases not foreseen before deployment.

In parallel, even as recent advances in policy learning have
shown significant improvements in robustness at deployment
time [6, 8, 16, 19], current methods can still fail due to
problems such as data distribution shift [14] or incomplete
state observability [7]. To address this issue, HitL methods
can be a natural fit for learning agents: the robot operates
autonomously when possible, leveraging the ability of policy
learning to execute complex motor control tasks. An expert
operator can take over for corner cases, ensuring task success.
However, deploying HitL can be labor-intensive and impractical
if it implies constant monitoring of the robot’s behavior by the
human operator, or frequent interventions.

In this work, we propose a data-driven approach for gener-
ating HitL policies. We start from the basic HitL premise: the
robot generally acts autonomously, but a human operator is
available to provide teleoperation commands should the robot
require them. Our method is designed to determine when the
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Fig. 1: HitL policies with denoising uncertainty: We propose using
denoising uncertainty as a metric for deciding when to request (human)
expert assistance. Predicted de-noising vectors in end-effector position
space (illustrated here via arrows on end-effector position) are collected
in a vector field, whose inter-mode divergence and intra-mode variance
are used to compute policy uncertainty; when this measure exceeds a
threshold, operator assistance is requested. We also show that ensuing
teleoperation data can be used to fine-tune policies, achieving notable
performance improvements with minimal additional data.

agent should request such expert assistance, making effective
use of a limited number of such calls during deployment. We
also remove the need for expert intervention during the training
phase, as that would place a large burden on the operator. This
means that the agent has no knowledge about the effect of
assistance, except for the assumption that is effective for task
completion.

To achieve this, we utilize diffusion models [6] as our policy
class. Diffusion policies offer two key advantages: (1) they
have demonstrated robust performance in imitation learning
tasks, and (2) their generative process involves an iterative
denoising mechanism which we can leverage for insight into
the agent’s decision-making process. Specifically, we use the
denoising information to compute an uncertainty metric for
the policy, which is then used during deployment to determine
when human intervention is most beneficial (Fig. 1). To achieve
this, we directly leverage the noise prediction model learned
during the policy training process. Therefore, uncertainty
estimation does not require training any additional models,
imposes a minimal cost at run time, and can thus be considered
a “free” byproduct of diffusion policy training. Finally, we
show that data collected during the operator interventions
can be incorporated back into training through a fine-tuning
process that further improves policy performance. Our main
contributions are as follows:

● We propose a novel method for HitL policy execution
using uncertainty estimation with diffusion policies. Our
method does not require human-robot interaction during



training, and incurs minimal computational overhead
during deployment.

● We validate our method across multiple types of deploy-
ment challenges, in both simulated and real environments.
Experimental results show that our approach requires
fewer human interventions and achieves higher task
performance compared to alternative learning-based HitL
agents.

● We also show that our uncertainty-based state identification
method can be utilized to collect targeted fine-tuning
data, yielding performance improvements with smaller
datasets compared to collecting additional full-trajectory
demonstrations.

II. RELATED WORK

Our work is closely related to interactive imitation learning
(IIL), where a learning agent queries an expert for additional
labels during policy execution and augments the training
dataset with expert demonstrations [21, 15, 18, 24, 5, 17].
An effective data collection strategy for IIL is human-gated
DAgger [12], which relies on a human to continuously monitor
and intervene during robot execution. However, such continuous
supervision is inefficient and undermines the goal of robot
learning. To make HitL systems practical, the robot must
be strategic in when and how it requests human assistance.
Prior work has explored budgeting expert queries in IIL. For
example, Hoque et al. reduce human effort by constraining
robot queries using models of limited human attention [10]
or fixed intervention budgets [9]. However, these methods
require extra training procedures during training or deployment,
increasing computational demands. This overhead is especially
problematic during policy execution, where it may introduce
additional latency. In contrast, our approach avoids additional
training and supports efficient parallelization during deploy-
ment, resulting in minimal runtime overhead. Other approaches
leverage action consistency [1], diffusion loss [25], or online
conformal prediction [27] to decide when to query the human.
One crucial aspect of this line of work is the selection or
online-tuning of their thresholds. To minimize human efforts in
a HitL pipeline, our method leverages the multi-modal nature
of human demonstrations to detect critical states where the
robot is uncertain. We demonstrate that our method is robust
to threshold selection in different scenarios.

III. METHOD

We begin the description of our method with a short recap
of diffusion policies, specifically the action denoising process
which we will then leverage to introduce our metric for
quantifying uncertainty. After that, we describe how this metric
can be used by a HitL diffusion policy agent to determine when
to request operator assistance, and finally how teleoperation
data obtained through this method can in turn be used to
fine-tune the original policy.

Diffusion policies generate actions through an action-
denoising process, leveraging denoising diffusion probabilistic

models (DDPM). A DDPM models a continuous data distri-
bution p(a0) as reversing a forward noising process from a0

to aK , where aK is Gaussian noise sampled from N (0, σ2I).
The generative process π(at∣ot), where ot and at are robot
observations and actions at time step t, starts by sampling an
action aKt as random noise, and then iteratively denoises it
using:

ak−1t = β(akt − γϵθ(ot, akt , k) +N (0, σ2I)) (1)

where β, σ and γ are functions of iteration step k. ϵθ(o, ak, k)
is a learned model that predicts the noise to be removed at
each denoising step.

A. Denoising-based uncertainty metric

To estimate the uncertainty of a diffusion-based agent, our
method leverages the generative process described above. In
particular, we assume that our diffusion policy is operating
on task space control, which is a very common case in recent
diffusion-based robot policy learning methods [20, 26, 11],
and outputs absolute end-effector poses as part of its action
vector. In this case, the noise predicted (and removed) during
the generative process can be interpreted as a vector field
pointing toward the distribution for intended end-effector pose
the at the next step. We can thus leverage this vector field to
analyze whether the diffusion-based agent is confident about
its generative target.

Our goal is to estimate an uncertainty metric
Uncertainty(ot) where ot is the observation at time step
t. We begin by sampling a set of end-effector poses As

t , where
each entry ast ∈ As

t is within a distance r from the current
pose. When operating in task-space position control, each of
these samples can be interpreted as an action vector. We can
thus feed these samples through the diffusion policy noise
prediction model, and collect the predicted noise vectors: let
the set Vs

t contain all vectors vst = ϵθ(ot, ast ,0) computed for
each ast ∈ As

t . This vector field encodes directions toward the
action distribution that the policy aims to recover. We will
use these denoising vectors to estimate uncertainty, defined as
Uncertainty(ot) = f(Vs

t ).
The simplest method to assess uncertainty is to consider the

variance of the vector field Vs
t . However, diffusion policies

are often used for their ability to capture multi-modality in
the underlying demonstrations: from any given state, there
might be multiple distinct action trajectories that accomplish
the desired task. Thus, the denoising vector field could reflect
the multi-modal nature of the demonstration data, and naive
variance estimation of the vector field may fail to capture this
effect.

To address this, we use Gaussian Mixture Models (GMMs) to
capture the potentially multi-modal nature of action generation.
Our method starts by fitting the collected denoising vectors
with N GMMs, each using a different number of modes. We
then select the best-fit GMM for uncertainty estimation via
maximum likelihood estimation:

max
n,θg

P (Vs
t ;n, θg),



where n is the number of modes and θg contains the parameters
of the GMM. With the best-fit GMM, we then estimate the
agent’s uncertainty. We first evaluate the divergence between
each mode:

D(Vs
t ) =

1

n(n − 1)∑i,j
1 − Sc(gi, gj)

where,
Sc(gi, gj) =

gi ⋅ gj
∣∣gi∣∣ ⋅ ∣∣gj ∣∣

Here, gi represents the mean of the ith mode and Sc represents
cosine similarity between two vectors. We also evaluate the
GMM variance as part of the uncertainty estimation:

Varg(Vs
t ) =∑

i

p(vi)Var(vi) (2)

where Var represents the variance of vector data and vi
represents vector samples belongs to the ith mode of the GMM.
Putting them together, we can estimate the overall uncertainty
as:

Uncertainty(ot) =D(Vs
t ) + αVarg(Vs

t ), (3)

where α is a constant. This uncertainty estimation considers two
aspects during denoising: how diverged the target distributions
are, and how much entropy there is in each of the modes.

B. Uncertainty-based intervention and policy fine-tuning
Having defined our uncertainty metric, we can use it during

deployment by setting a threshold to determine whether we to
request human assistance. At every state, the agent computes
its own uncertainty and, if the level of uncertainty exceeds
the threshold, the agent requests that the operator take control
and teleoperate the system for several steps, until uncertainty
returns below the threshold.

In addition, our method can also be used to collect data to
further fine-tune the policy. This allows for better performance
in the next policy execution. To fine-tune a policy, we save the
observation and action pairs {O,A} when a human operator
is intervening with the robot and use this data set to fine-
tune the underlying diffusion policy. To avoid catastrophic
forgetting [2], we sample from both the fine-tuning dataset
Dft and pretraining dataset Dtrain. For each mini-batch, we
ensure 50% are from Dft. Our approach implicitly means that
this fine-tuning data specifically addresses the areas of state
space where the agent’s uncertainty is high, since that is where
operator assistance is requested.

Putting all components together, the method contains three
main steps: 1. train a diffusion policy; 2. deploy the policy,
and request operator control if policy uncertainty estimated by
our metric exceeds a preset threshold; 3. (optional) use human
intervention data to fine-tune the diffusion policy.

IV. EXPERIMENTS

To test applicability of this framework, we consider three
types of deployment issues that typically cause uncertainty for
learning-based agents. Case 1: Data distribution shift, such
as visual observation distribution shift caused by change of

Fig. 2: Experiments in simulated environments. Left: we consider
three scenarios during policy deployment. (a) Distribution shift; (b)
Partial observability (c) Action multi-modality. Right: qualitative
visualization of predicted uncertainty, with lighter colors indicating
higher uncertainty.

lighting conditions, or a change in environment dynamics due
to interaction with novel objects. Case 2: Incomplete state
observability, commonly approached by redesigning, adding
or moving sensors, but difficult to tackle in the general case.
Case 3: Incorrect choice between different action modes,
where the agent is presented with a discrete choice between
two or more action trajectory modes equally well represented
during training. While diffusion policies are naturally well-
equipped to make such choices, task under-specification can
lead to the selection of the incorrect action mode for the given
goal.

During policy execution, these problems may not be present
in all states – many states are easy to make decisions for,
and require no human intervention (e.g. moving the arm in
free space). The goal of our metric is to identify when the
issues described above arise, and selectively request help. For
Case 3 above, we posit that a few steps under teleoperator
control can “steer” the policy towards the desired mode, after
which autonomous operation can resume. Case 1 lends itself
well to fine-tuning based on the novel data collected during
teleoperation. Finally, we expect Case 2 to be the most difficult,
since correct decision making is impossible without changing
the available observation. We design our experiment set to test
a range of scenarios covering these situations.
A. Evaluation and Baselines

We validate our method across the three types of deployment
challenges in both simulated and real environments. In our test
scenarios, full teleoperation generally succeeds, with sufficient
human intervention achieving near 100% task success. However,
a key goal of HitL deployment is efficiency: assistance
should be requested conservatively to minimize unnecessary
interruptions.

Our evaluation thus focuses on two core aspects. First, we
measure the efficiency of human-robot interaction by tracking
the required frequency of human interventions to achieve 100%
task success with K rollouts (K depends on tasks and K ≥
20). Second, we assess the improvement in task performance
enabled by human assistance and policy fine-tuning, quantifying
the impact of integrating human feedback. We compare our
approach against three state-of-the-art baselines that incorporate
uncertainty estimation into HitL frameworks:
● ThriftyDAgger [9], which uses a model-ensemble-

based “novelty” (i.e., out-of-distribution) detection and a
risk metric learned via Bellman updates on test-time data.

● Diff-DAgger [25], which uses predicted actions from a
diffusion policy to compute the diffusion loss, and, based
on it, a metric to decide requesting human assistance.



Lift-
sim

Cup-
stacking

Open-
drawer

HULA-offline [22] 55.7(±6.1) 54.0(±16.3) 21.7(±11.7)
ThriftyDAgger [9] 33.5(±7.4) 21.2(±15.6) 17.2(±8.9)
Diff-DAgger [25] 30.2(±1.3) 32.0(±4.0) 16.0(±4.4)

Our method 16.9(±4.5) 5.4(±1.0) 8.0(±1.9)
Avg. Full-traj. Length 76.6(±5.9) 147.8(±12.9) 114.8(±5.7)

TABLE I: Average # of human assistance steps needed to achieve
100% success rates for simulated tasks.
● HULA-offline [22], which produces an RL-based HitL

policy by explicitly estimating the variance of state values.
We adapt it to offline RL by implementing an offline
variant using Conservative Q-Learning (CQL) [13].

B. Simulated Environments
We now summarize the simulated environments used to test

our method. Distribution shift: Lift-sim. In this task, we ask
the robot to grasp and lift objects in a table-top setting. To
emulate distribution shift, demonstration data is collected using
only a single object (red cube - see Fig.2), while for testing
we roll out the pretrained policy to a set of unseen objects
(round nuts, hammers, and hooks). Partial observability: Cup
Stacking. Here, we ask the robot to grasp a green cup and place
it inside a red cup. We use three views as our observation: front,
side, and wrist. Successful execution requires the robot to infer
object alignment based on its observations. Misalignment can
lead to unintended collisions, leading to failures. To introduce
variability, cup positions are randomized during data collection.
Incorrect choice of action mode: Open drawer. Here, the
robot is tasked with opening one of three drawers in the scene.
The collected dataset includes trajectories for opening each
drawer, with 1/3 of the data corresponding to each drawer.
However, the dataset does not specify which drawer is to be
opened in a given trajectory, introducing under-specification.

As a sanity check, we first evaluate the unassisted task
performance of the diffusion policy on each task under the
training data distribution. For the Lift-sim task, the fully
autonomous policy achieves 100% success rate on the training
object but fails completely (0% success rate) on unseen objects.
For Cup Stacking, the robot consistently picks up the first cup
(100% grasp rate) but fails to place it into the second cup due to
alignment difficulties, resulting in a success rate of 0% without
human assistance. This task is also sensitive to observation
selection – training with only side and front views causes the
robot to fail when grasping the green cup. For Open Drawer,
the fully autonomous policy learns to open a drawer with
100% success if the task description does not specify which
particular drawer should be opened. Interestingly, despite the
under-specified training (i.e., no conditioning on which drawer
to open), the policy captures the multi-modality of the training
distribution. During 100 rollouts with random sampling, the
robot opens the middle and bottom drawers in 15% and 85%
of trials, respectively, but never opens the top drawer.

C. Efficiency of Human Interactions
We now evaluate HitL deployment performance of these

tasks. We note again that 100% success rate is always possible
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Fig. 3: Sensitivity to threshold selection.

with sufficient human assistance. Thus, we focus here on
achieving high success rates with as few human assistance
steps as possible, which is a critical aspect for real-world
scalability of HitL systems.

As shown in Table I, for all simulated tasks, our method out-
performs all baselines, and allows the policy to achieve perfect
task success with the fewest intervention steps. Qualitatively
(see accompanying video), we observe that, for Lift-sim, the
robot only seeks human assistance when its gripper is close to
the object, and lifting happens without intervention. For Cup
Stacking, our method identifies states where the agent aligns
the two cups as having high uncertainty, whereas picking up
a cup (which benefits from unoccluded view) is marked as
low uncertainty. Finally, for Open Drawer, the policy asks for
assistance when it needs to decide which drawer to reach to,
and, once the human operator steers it towards the intended
target, the robot autonomously completes the rest of the task.

Looking at baselines, we find that ThriftyDAgger pro-
vides good uncertainty estimation for in-distribution data (e.g.
high state novelty when close to the first cup and when placing
on the second cup for Cup Stacking), but its autonomous
behavior is less effective and thus requires a low threshold
for human assistance, leading to more interventions for a
100% success rate. Diff-DAgger, which, like us, relies
on diffusion models as a policy class, also requires more
human assistance to achieve 100% success rates. Finally,
HULA-offline performs the worst, likely due to its inability
to utilize a sparse reward in an offline setting.

Several key hyperparameters influence the performance
of our system. We focus here on the most critical one –
the uncertainty threshold. In this work, we always use an
uncertainty metric threshold set at the 95% quantile of a held-
out validation set not used in training or testing. We find that
this selection consistently leads to 100% success rate with low
teleoperator involvement. Figure 3 shows the effect of further
lowering this threshold for the cup stacking task, which, as
expected, leads to more human assistance. We note that all
points shown in this figure represents 100% success rate over
five rollouts (cup location randomized), which highlights that
our metric can consistently detects critical states that requires
human assistance.

D. Fine-tuning Performance

Our method requests operator assistance in states where the
policy exhibits high uncertainty. We posit that these states are
particularly valuable as they highlight areas where the policy
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Fig. 4: Average success rate of fine-tuning the Lift-sim task with
different number of human intervention steps.
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Fig. 5: Real robot experiments: we design our experiments to
elicit the challenges described in Sec. IV on a real robot. Examples
of unassisted, HitL, fine-tuned policy rollouts can be found in the
supplementary video.

can benefit from additional data collection for fine-tuning. We
test this hypothesis by checking if leveraging our uncertainty
metrics reduces the amount of data required for fine-tuning,
while still achieving significant performance improvements.

Figure 4 shows autonomous policy performance improve-
ments as a function of the size of the fine-tuning dataset, for our
method as well as the baselines. Our method also consistently
achieves higher success rates with the similar amount of fine-
tuning data. Among all baselines, Diff-DAgger shows best
improvement with small amount of data. We explain this by its
use of diffusion-based policies. We also note that fine-tuning
on carefully curated data also outperforms the simple baseline
of fine-tuning using full trajectories (i.e. complete additional
demonstrations on testing scenarios). We note that the data used
for each fine-tuning experiment is collected independently (i.e.
the HitL fine-tuning dataset is not a part of the full-trajectory
data set). For the HitL fine-tuning, the fine-tuning dataset
only consists of actions when the robot is operated by human
operators, instead of full trajectories.

E. Real robot experiments

Finally, we validate our method on real robot data collected
via tele-operation. To support real-world deployment, we
employ denoising diffusion implicit models (DDIM) [23] for
high-frequency action generation. We evaluate our method on
4 real robot tasks (see Fig. 5). As in the simulated experiments,
we show an example in each of the deployment problems.

Lift-
real

Stack-
ing

3-Mode
Pushing

Nut-
PnP

Our method 7.2 6.8 6.5 8.4

Avg.Full-traj.Length 80.0 111.9 98.9 48.8

TABLE II: Average # of human assisted steps needed to achieve 100%
success rate during policy deployment.

Train Test ∣∣Dft∣∣
Zero-shot 1 0.16 0

HitL fine-tuning (Ours) 1 0.63 80
Full-traj. fine-tuning 1 0.31 132

TABLE III: Fine-tuning performance of the Lift-real task. Results are
success rates derived by 20 policy rollouts per object.

With HitL deployment, the robot can complete all four tasks.
On average, our method only requests help from the human
for approximately 8.3% of time steps for an 100% success rate
(see Table II). We note that, since we are using action chunking
during real robot deployment, one human intervention allows
the human to control the robot for four steps, the same as the
diffusion policy.

Qualitatively, our method identifies crucial states during
policy execution. For example, in the Lift-real task, the robot
asks for assistance when the gripper is close the the object.
Using human-collected data with uncertainty, we can fine-
tune the diffusion policy to improve 47% success rate on
average (shown in Table III), outperforming fine-tuning with
full-trajectories of data. In the 3-Mode Pushing task, the robot
autonomously reaches to the side of the object and then
transfers control to the human operator, who poses the gripper
in the correct location depending on the intended target.

Once the pose of the gripper is indicative of the desired target,
uncertainty drops, and the robot takes over and completes the
task autonomously. In the Ramekin Stacking task, our method
identifies high-uncertainty alignment states when the bottom
ramekin is visually occluded (see Fig. 5). In contrast, grasping
the first ramekin – where visual observations suffice – is marked
as low-uncertainty and thus performed autonomously.

Finally, in the Nut Pick-and-Place task, our method assigns
high uncertainty to two critical stages of execution: positioning
for grasping (where the dataset contains diverse strategies for
aligning the gripper with the nut edge as shown in Fig. 5) and
placement (where precise positioning of the nut is required).
The visual observations from the wrist camera and the two
side cameras fail to reliably determine the stability of the
placement, resulting in elevated uncertainty. The agent thus
requests operator assistance for task completion.

V. CONCLUSIONS

In this work, we propose a novel method that enables
robots to actively and efficiently request HitL assistance during
deployment. Leveraging an uncertainty metric derived from the
denoising process of diffusion policies, our approach identifies
states where human intervention is most beneficial, thereby
minimizing unnecessary monitoring and intervention. For future
work, our approach can be extended to Vision-Language-Action
(VLA) models that employ diffusion-based action heads [4, 3].
We also aim to investigate how to design interpretable feedback
mechanisms that allow robots to express uncertainty and intent
in a way that is intuitive for human operators—potentially
leveraging Vision-Language Models, as demonstrated in [1].
These efforts aim to bridge the gap between fully autonomous
systems and HitL deployment, fostering more efficient and
scalable solutions for real-world robotic applications.

https://roamlab.github.io/uncertainty-diffusion/
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