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R2BC: Round-Robin Behavior Cloning (Ours)

A human can easily demonstrate 
actions for a single robot, while 
other robots act autonomously.
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Fig. 1. Round-Robin Behavior Cloning (R2BC): Traditional Behavior Cloning (left) require coordinated and centralized demonstrations, where an expert
demonstrates actions near-optimally for all agents. A lone human operator is unlikely to be able to provide high-quality demonstrations due to underactuated
control and increased cognitive burden. Our method (right), R2BC, extends imitation learning to the multi-agent domain and only requires the human operator
to provide demonstrations to one agent at a time. As the expert cycles through demonstrations for each agent, the learned policies cloned from the existing
single-agent demonstrations are being executed on the other robots, diversifying the distribution of observations seen by the expert’s agent and iteratively
improving the cooperative behavior.

Abstract—Imitation Learning (IL) is a natural and intuitive
way for humans to teach robots, particularly when high-quality
demonstrations are easy to obtain. While many studies have
explored IL in the context of single-agent robotic tasks, relatively
few have addressed how to extend these methods to multi-
agent systems—especially in settings where a single human
must provide demonstrations to a team of collaborating robots.
In this paper, we introduce Round-Robin Behavior Cloning
(R2BC), a method that enables a single human operator to
effectively train multi-robot systems through sequential, single-
agent demonstrations. Our approach leverages the human op-
erator’s ability to control one agent at a time and enables the
operator to iteratively teach the entire system, without requiring
demonstrations in the joint multi-agent action space. We show
that R2BC methods match—and in some cases surpass—the
performance of traditional behavior cloning trained on an oracle
set of privileged synchronized demonstrations across four multi-
agent tasks.

I. INTRODUCTION

Imitation Learning (IL) has become a cornerstone of robot
learning, enabling agents to mimic human demonstrations
without explicitly defined reward functions. From manipula-
tion in cluttered environments [22, 29, 5] to mobile naviga-
tion [12], IL has shown that it can distill expert behavior into
performant policies with minimal intervention. However, while
single-agent imitation learning has seen widespread success,

the same cannot yet be said for multi-agent systems—where
cooperation, coordination, and partial observability introduce
unique challenges that are not easily addressed by simply
scaling existing techniques.

Several studies have examined cases where multi-agent
imitation learning could greatly improve solutions to real-
world problems [1, 8, 3], but they make strong assumptions
about the type of demonstrations that can be provided to a
group of agents. Specifically, these studies rely on coordinated
and synchronous demonstrations, where all agents are taking
correct actions simultaneously, reducing the multi-agent IL
problem to a single agent problem in the joint-action space
of the agents. These methods are unrealistic, and usually
implausible, for real world adaptation as human operators can
not reliably teleoperate multiple robots at the same time to
accomplish complex tasks.

In this paper, we address the following research question:
How can we extend imitation learning to multi-agent systems
when humans can only provide demonstrations to one agent a
time? Our work introduces a novel technique, Round-Robin
Behavior Cloning (R2BC) (Fig. 1). The key idea is that
demonstrations can be individually provided to agents online
to iteratively improve a multi-agent policy that achieves parity
with, or outperforms, the performance of traditional imitation



learning methods that require centralized demonstrations. The
contributions of our work are as follows.

• We introduce a novel problem setting, multi-agent im-
itation learning from single-agent demonstrations, with
the objective of training a collective policy using only
individual agent demonstrations.

• We extend single-agent behavior cloning to this multi-
agent problem setting by proposing Round-Robin Be-
havior Cloning (R2BC), removing previous unrealistic
assumptions of access to coordinated demonstrations in
order to imitate demonstrations to learn a policy.

• We show that R2BC is able to match or exceed the
performance of behavior cloning trained on joint-action
coordinated demonstrations in 4 simulated multi-agent
domains using a synthetic demonstrator.

• We show that two round-robin variants of DAgger [24]
and DART [15] achieve performance parity with the
original algorithms trained with joint-action coordinated
demonstrations.

To the best of our knowledge, we are the first to propose and
test a behavior cloning method for multi-agent systems that
learns solely from online single-agent demonstrations.

II. RELATED WORK

A. Multi-Robot Teleoperation

Providing demonstrations to a team of coordinating robots
is a challenging research problem, as the degrees of freedom
required to control the entire system is often more than one
human can control at once. Existing methods for teleoperating
multi-agent systems include a single-human operator manual-
ing switching between robots [7], or having multiple human
operators controlling individual agents simultaneously [20].

Recent studies have shown that learned models can map
low-dimensional control inputs to control high-DoF systems
such as swarms [28] and manipulators [18]. While these
models can effectively allow humans to control complex
systems (and therefore provide demonstrations), they are often
trained on task-specific data and are unlikely to generalize
to unseen tasks, making them a costly approach to providing
demonstrations in deployed settings. Instead, we consider the
problem where the human can control a subset of the control
parameters, corresponding to the control of an individual
agent, for each demonstration.

Similarly, HiTAB (Heirarchical Training of Agent Behav-
iors) [27, 19] provides an approach to multi-agent demon-
stration collection that learns a set of atomic “skills” that a
human can use as a discrete set of actions to control a set of
heterogeneous agents. We assume that no preconceived skills
library is available and we provide demonstrations directly in
the agent’s action space.

B. Multi-Agent Imitation Learning (MAIL)

The use of imitation learning to train a policy that mimics
an expert task demonstrator has been widely studied in single
agent literature [24, 9, 23, 13, 10, 4, 6]. Extensions to
multi-agent systems, namely Multi-Agent Imitation Learning

(MAIL), have shown that policies can be learned from demon-
strations to solve problems in grid energy management [8],
autonomous vehicle control [3, 11], and multi-agent path
finding [1].

Current approaches successfully extend learning from
demonstrations (LfD) to the multi-agent setting by modeling
the spatial-temporal relationship between agents in a Graph
Neural Network [30, 17], modeling latent structures of coorpo-
eration [16], combining LfD with RL [11, 21], leveraging large
transformers [1], and introducing parameter sharing techniques
for traditional single-agnet IL methods [3, 26].

Each of these proposed solutions involve training a policy
from joint demonstrations, where expert trajectories involve all
N agents working together simultaneously in noisily-optimal
demonstrations. However, a dateset of joint demonstrations [1]
assumes unrealistic access to synchronized demonstrations for
all agents, or a pretrained RL demonstrator policy [30], in
which case we have no need to deploy imitation learning.
These assumptions may be difficult to satisfy in real-world
in-the-wild tasks and none of the discussed methods directly
study how to allow a real human to provide demonstrations to
the agents. Our work relaxes these assumptions, as a human
is unlikely to be able to provide expert demonstrations to N
agents simultaneously, but is capable of providing examples
to individual agents. Our work is the first to show successful
multi-agent IL under realistic assumptions about the human’s
ability to demonstrate multi-agent tasks. Our work shows that
a sufficient policy can be trained by iteratively providing
demonstrations to individual agents, one at a time, enabling
deployment to lone-instructor tasks.

III. PROBLEM FORMULATION

We seek to train a set of N robot agents to collaborate
while successfully accomplishing a task. Following existing
nomenclature, we formulate the multi-agent learning from
demonstrations problem as a Markov (Stochastic) Game rep-
resented as the tuple ⟨I,S,A,R, T ⟩ consisting of a set of
agents I = {1, 2, . . . , N}, states S, and joint action-space
A = A1×A2×· · ·×AN . In this work, we do not learn directly
from rewards, but it is worth noting that we focus on games
with shared reward (also called common reward), where all
agents have the same goals and receive the same reward
signal at time t. The transition dynamics of the environment,
T : S × A × S → [0, 1], represents the probability of
transitioning from state s ∈ S to state s′ ∈ S after agents
take joint action a ∈ A.

Let an expert trajectory with finite horizon, T , be defined as
the sequence of states visited by the expert and the associated
action taken at that state, τ = (s0, a0, s1, a1, . . . , sT ), where
st ∈ S is the state at time t and at ∈ A is the joint-action
(i.e. concatenation over N individual agent actions) taken in
state st.

Given a dataset of nosily-optimal demonstrations, D, imita-
tion learning seeks to learn a policy π : S → A, that closely
models the expert’s (state, action) pairs and achieves similar
task performance. Generally, the goal of imitation learning is



to find the parameters, θ, to a policy, πθ, such as to minimize
the error between the demonstrated expert’s actions, π∗(s), and
the outputs of the learned policy, πθ(s), given by the objective
function

min
θ

Eτ∼D

[
T−1∑
t=0

L(πθ(st), π
∗(st))

]
(1)

where L is a loss function that penalizes divergence from
the experts actions, commonly the squared error ||πθ(st) −
π∗(st)||2.

Contrary to the single-agent literature, we assume that a
single human cannot teleoperate the entire system with optimal
actions, therefore they cannot provide actions in the joint-
action space, A. For systems with any non-arbitrary number
of agents (i.e. N ≥ 2), this is a reasonable assumption given
that (1) the amount of cognitive burden required to monitor
this system increases with the number of agents [14] or (2)
teleoperation interfaces cannot control all degrees of freedom
for complex systems. However, we assume that the human
is capable of controlling small parts of the system, such as
one individual agent at a time, which we call single-agent
demonstrations. For agent i ∈ I, a demonstration of length T
takes the form

τi = (s0, ai,0, s1, ai,1, . . . , sT ) (2)

where ai,t ∈ Ai is an individual agent’s action, not the joint
action of all agents. Note that the state remains unchanged
here, and the other agents will still be operating in the
environment, which the expert actions should account for.

Given N sets of single-agent demonstrations,
{D1,D2, . . . ,DN}, we seek to learn a policy that achieves
sufficient collective performance, using only individual
demonstrations.

IV. METHODS

In this section, we introduce Round-Robin Behavior
Cloning (R2BC) (Fig. 1), a method that enables a single
human operator to cycle through each agent individually and
provide a demonstration of the task. At regular intervals, the
policies for all agents are updated using the respective buffer of
demonstration data provided to each agent. To iteratively learn
a collaborative policy, the demonstrator continues to provide
actions (in a round-robin fashion) for each agent while the
remaining agents execute the learned policy,

First, we introduce our method and the learning paradigm
for both centralized and independent policy architectures
(Section IV-A). Then, we offer some theoretical insight into
how R2BC can produce more robust imitation policies than
traditional behavior cloning (Section IV-C).

A. Round-Robin Behavior Cloning

Round-Robin Behavior Cloning (R2BC) is an online imita-
tion learning algorithm that enables a single human operator to
sequentially provide demonstrations to a team of cooperative
agents. Unlike traditional joint-action behavior cloning, which

Algorithm 1 Round-Robin Behavior Cloning (R2BC)
Require: Number of agents N , expert policy π∗, ini-

tial agent policies {π1, . . . , πN}, demonstration buffers
{D1, . . . , DN}, update frequency k

1: Initialize iteration counter c← 0
2: while not converged do
3: for each agent i = 1 to N do
4: Reset environment to initial state s0
5: for t = 0 to T do
6: Agent i receives expert action ai,t ← π∗(st)
7: for each agent j ̸= i do
8: Agent j takes action aj,t ← πj(st)
9: end for

10: Execute joint action at = (a1,t, . . . , aN,t)
11: Observe next state st+1

12: Append (st, ai,t) to Di

13: end for
14: end for
15: if c mod k = 0 then
16: Update policies π1...N using BC on D1...N .
17: end if
18: c← c+ 1
19: end while

requires all agents to be simultaneously demonstrated by an
expert (a setting infeasible for real-world human teleopera-
tion), R2BC assumes that the expert can only control a single
agent at any given time. Our method, shown in Algorithm 1
cycles through the agents in a round-robin fashion, allowing
the expert to demonstrate behaviors for one agent while the
others operate using their current learned policies. This setup
enables the realistic collection of diverse, on-policy training
data across a wide distribution of states.

R2BC is designed to terminate when the demonstrator
indicates that task performance has converged. In practice, we
cycle over agents multiple times, collecting trajectories for
each and performing policy updates every k iterations for a
specified number of single-agent demonstrations.

B. Centralized vs Independent Variants

While Algorithm 1 is described assuming independent poli-
cies, where each agent i has a distinct policy πi, our method
is also compatible with a centralized architecture that models
the joint action distribution. In this section, we describe how
R2BC accommodates both policy structures.

In the independent case, each agent maintains its own policy
πi : Oi → Ai, where Oi ⊆ S is the local observation space.
Demonstrations for each agent are stored separately, and only
the policy πθi is updated using its corresponding buffer Di:

L(θi) =
∑

(s,ai)∼Di

∥πθi(s)− ai∥2.

In the centralized case, a single policy πθ : S → A predicts
the joint action from the global state. During training, we apply



the loss only to the subset of output dimensions corresponding
to the demonstrated agent. Specifically, we define:

L(θ) =

N∑
i=1

∑
(s,ai)∼Di

∥πθ(s)[i]− ai∥2,

where πθ(s)[i] denotes the predicted sub-action for agent i
(i.e., the output slice of the joint action vector corresponding
to agent i).

Both implementations share the same round-robin data
collection process, where only one agent is demonstrated at a
time and the others act using their most recent learned policies.
Centralized models benefit from access to full state informa-
tion and tighter coordination, while independent policies scale
more easily and are suitable for partially observable settings.
In our experiments, we study both variants of R2BC to assess
the relative performance across diverse multi-agent tasks.

C. Reduced Covariate Shift

Compared to behavior cloning, we hypothesize that R2BC
implicitly reduces the covariate shift by diversifying the be-
havior of the other agents while demonstrating optimal actions
to the i-th agent. A centralized behavior cloning paradigm
would require coordinated near-optimal actions jointly taken
by all agents, limiting the training states to only states where
all agents are acting optimally. R2BC relaxes this distribution
and allows states where only the demonstrating agent is acting
optimally.

While we do not provide a theoretical foundation for
reduced covariate shift in this work, we provide empirical
evidence for this claim in our experiments and plan to prove
this in future work. We believe our method may have similar
theoretical improvements as other online imitation learning
methods such as DAGGER [24] and demonstrator noise in-
jection methods like DART [15].

V. EXPERIMENTS

We demonstrate the efficacy of round-robin behavior
cloning approaches on 4 multi-agent tasks in simulation. Our
experiments were designed to test the following hypotheses:

H1: Both centralized and independent R2BC will match
or exceed the performance of joint-action IL methods, using
the same number of demonstrations.

H2: An independent round-robin variant of DAgger [24],
R2DAgger, will match or exceed the performance of DAgger
using an oracle joint-action demonstrator.

H3: An independent round-robin variant of DART [15],
R2DART, will match or exceed the performance of DART
using an oracle joint-action demonstrator.

H4: R2BC methods will empirically reduce the covariate
shift compared to offline joint-action behavior cloning, indi-
cating a better ability to generalize to the deployment state
distribution.

We design two experiments across 4 multi-agent tasks
in simulation to test our hypotheses. First, we evaluate the
performance of our R2BC agents under the withheld ground-
truth reward to measure task performance and test H1, H2 and

H3. Second, we compare behavior cloning loss metrics from
the training data to the state of states observed in the evaluation
environments to test H4 and provide empirical support for the
theoretical hypothesis formed in section IV-C. The full details
of our experimental setup are described in section V-B.

A. Environments

We evaluate our methods in the Vectorized Multi-Agent
Simulator (VMAS) [2] on 4 cooperative tasks.

• Navigation: N agents are randomly positioned in a two-
dimensional space each with a designated goal. Agents
can utilize LiDAR-style sensors to avoid colliding with
each other en route to their objectives.

• Balance: N agents are placed under a freely rotating line
carrying a spherical package. The agents must transport
this package from the bottom to a goal at the top, without
allowing the line or the package to fall.

• Buzz Wire: Two agents are connected to an enclosed
mass using rigid linkages. The agents are penalized for
coming in contact with the enclosure and must take
cooperative actions that push the mass through the hall-
way. This environment represents a system with coupled
dynamics, where the actions of one agent can directly
displace the other agent, reflecting difficult multi-agent
transition dynamics.

• Transport: N agents cooperate to push package(s) having
a set shape set and mass into a designated goal region.
By default, packages are significantly heavier than the
individual agents can push on their own, requiring the
agents to work together to transport the package.

B. Methods and Baselines

We compare four variants of our R2BC method to a set
of behavior cloning baselines that have access to an oracle
demonstrator. For each environment, the methods are com-
pared under the same number of total demonstrations, which
vary between domains depending on the difficulty of the task.
Each policy is trained using a MSELoss until convergence
with a fixed learning rate of 1× 10−3 and a minibatch size of
256 state-action pairs.

After training, we evaluate the learned policies on the
same identical 50 initialization seeds and compute the average
environment reward. One benefit of testing in simulated envi-
ronments with synthetic demonstrators is that we can measure
how well our policies are able to generalize to the evaluation
states by measuring the deviation between between the experts
actions and the learned policy for each testing state. To do
this, we measure the loss on the training dataset and the loss
between the learned policy’s actions and the experts action
for each test trajectory in the evaluation environments and
compare the gap both losses (Fig. 2, bottom).

1) Joint Behavior Cloning (JBC): JBC serves as an oracle
behavior cloning method that learns from coordinated demon-
strations provided in the joint-action space. Recall from our
problem statement, that demonstrations of this form require
infeasible teleoperation degrees of freedom or a many-to-many
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Fig. 2. Main Results: We compare 4 R2BC methods to a set of 3 baselines that assume oracle (privileged) access to a joint-action demonstrator. Results
are averaged over 3 seeds with error bars indicating standard error. Top: 4 multi-agent tasks selected from the Vectorized Multi-Agent Simulator (VMAS) [2]
including Navigation (N = 3), Balance (N = 3), Buzz Wire (N = 2), and Transport (N = 3). Middle: The performance of each method is shown with
increasing number of expert demonstrations. In each case, one of our R2BC implementations matches or outperforms the baseline method. The rewards are
normalized between 0.0 (random policy) and 1.0 (demonstrator performance). Bottom: The difference between the training loss on the demonstration set and
testing loss on the evaluation trajectories. Lower values are considered better as the gap between training and evaluation loss closes.

teleoperation scheme where N human operators control N
robots. Therefore, we consider this an oracle method that has
access to unrealistic data, but reflects the currently proposed
assumptions about coordinated demonstration in multi-agent
imitation learning [1, 8, 3].

2) DAgger w/ Oracle Actions: A centralized multi-agent
implementation of DAgger [24] where a joint-action expert
provides corrective labels to on-policy rollouts.

3) DART w/ Oracle Actions: An centralized multi-agent
implementation of DART [15] where noise is injected into the
demonstrators control online to vary the state distribution and
allow the demonstrator to correct the robot in bad states.

4) Centralized-R2BC: A centralized policy implementation
of our approach. Demonstrations are provided for one agent
at a time, reflecting more realistic assumptions about human
teleoperators. The loss is applied over the output indicies
corresponding to the i-th agent receiving demonstrations.

5) Independent-R2BC: Same as Centralized-R2BC but with
an independent policy implementation with local observations
as input instead of the global state.

6) R2DAgger: A decentralized round-robin implementation
of DAgger [24], where the demonstrator provides a corrective
actions for only one agent in each demonstration.

7) R2DART: A decentralized round-robin implementation
of DART [15]. This is identical to Independent-R2BC with
noise injected into the demonstrator’s policy.

C. Expert Demonstrations

To quickly evaluate our approach and perform an analysis of
covariate shift, we used a synthetic demonstrator trained using
reinforcement learning. For all tasks except Transport, we
trained a centralized PPO policy [25] for 6 million timesteps
using the VMAS default hyperparameters [2]. The learned
policy takes the state and input and outputs a joint action. This
satisfies the requirements of the JBC baseline, which requires



coordinated and centralized demonstrations. For R2BC, we
use the output logits corresponding to the ith agent to get
a single-agent action. For the Transport task, we found that
the VMAS heuristic policy performed better than any RL
policy which is what we used as the demonstrator for that
task. Modeling expert policies as centralized allows us to give
demonstrations to the entire set of agents, and to individual
agents (by indexing into the joint action), ensuring that the
same expert demonstrator is used across all methods. In the
continuation of this work, we plan to add experiments with a
real human providing demonstration to individual agents via
teleoperation.

VI. RESULTS

A. Task Performance

In all experiments, we normalize the task reward to the
range [0, 1], where a score of 0.0 corresponds to a random
policy and 1.0 reflects the performance of the expert demon-
strator. As standard in imitation learning, the expert sets an
upper bound that is typically not exceeded by the learned
policy.

In navigation, balance, and buzz wire, both the centralized
and decentralized R2BC methods achieve better performance
than JBC after 96, 144, and 54 single-agent demonstrations, re-
spectively. Notably, in transport, only the decentralized R2BC
method is able to surpass the performance of JBC, while the
centralized method fails to improve with more demonstrations.
We hypothesize that this is due to the challenging nature of
the transport task, which has a much larger variance in starting
configurations than the other tasks, making regression over
the 6 dimensional centralized action space more difficult from
single-agent demonstrations than it is in the independent and
oracle counterparts. These results indicate strong support for
H1 in the context of independent policies, with some support
for H1 in the centralized case. In each environment, at least
one variant of R2BC achieves parity with, or surpasses, JBC—
despite JBC having access to unrealistic, fully coordinated
joint-action demonstrations. This observation supports our
claim that R2BC offers a viable and scalable alternative for
teaching multi-agent systems with only single-agent expert
supervision.

Across navigation, balance, and buzz wire, R2DAgger
performs significantly better than DAgger and in trans-
port achieves similar performance as DAgger. This indicates
strong support for H2. For navigation and balance, R2DART
achieves parity with the oracle DART method with increasing
demonstrations. Surprisingly, in both buzz wire and transport,
R2DART performs significantly better than DART, which
appears to plateau in performance early on (after 54 and 144
demonstrations, respectively). We believe this improvement
is a result of the compounded diversity experienced under
R2DART which observes varying state in the other agents (R2)
in addition to control noise injected into the demonstrators
actions (DART). This indicates strong support for H3.

B. Covariate Shift

To empirically measure covariate shift (H4), we compare
the training and testing loss gap of each method, as shown in
the bottom row of Figure 2. Following previous experiments
studying empirical measures of covariate shift [15], we inter-
pret the convergence of the testing loss toward the training loss
as evidence of improved generalization and reduced covariate
shift.

We find that, in almost all cases, the four round-robin
methods all exhibit a similar decrease in the train-test gap
as the two online oracle baselines (DART and DAgger) and
exhibit significantly less evaluation loss compared to the of-
fline oracle behavior cloning (JBC). The one exception to this
is the centralized R2BC method in the transport task, which
very quickly plateaus in the loss graph indicating a failure
to uncover new data that leads to improved generalization.
While H4 is not yet theoretically supported, these results are
compelling evidence that round-robin methods are inherently
served by similar online data diversity benefits as the oracle
DAgger and DART methods, leading to improved test time
generalization. Therefore our results carry some empirical
support for H4.

Another notable trend emerges from our empirical data—in
environments where the test loss converges to the training loss,
we observe a corresponding spike in task performance—often
approaching the expert level. This empirical correlation sug-
gests that the alignment between training and deployment
distributions can serve as a useful diagnostic for policy quality
in imitation learning, particularly in multi-agent settings where
covariate shift can be severe.

VII. CONCLUSION

Our paper highlights a novel research question targeting
the deployment of multi-agent systems: How can we extend
imitation learning to multi-agent systems when humans can
only provide demonstrations to one agent a time? Our algo-
rithm, R2BC, utilizes round-robin single-agent demonstrations
to gather examples of what each agent should do with respect
to both the environment and the other autonomous agents.
Using these online demonstrations, we show that a synthetic
demonstrator can actually achieve greater task performance
using our algorithm than when providing joint-action coor-
dinated demonstrations for all N agents simultaneously. We
hypothesize that the online nature of R2BC is able to implicitly
reduce the covariate shift compared to JBC and therefore
correctly infer actions in unseen states at runtime.

We are eager to continue this work and enable the real-world
deployment of R2BC. While our initial results are promising,
our results indicate that the reliability of our method may
depend on the type of task/environment that R2BC is deployed
in. Therefore, we plan to conduct additional analysis to de-
termine which domains and tasks R2BC is best suited for,
including testing on a more diverse set of environments. We
also plan to deploy this method for real-world mobile robotics
tasks and evaluate the cognitive burden on humans providing
R2BC feedback online to robots in the real world.
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