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Abstract—In safety-critical human-robot interaction domains,
such as autonomous driving and assistive robotics, it is important
for robots to autonomously assess whether they have received
sufficient human feedback to learn reliable policies. Simultane-
ously, human teachers need to understand the informativeness
of their feedback to provide effective guidance. This paper
presents a unified framework that integrates both the robot’s
self-assessment and the human teacher’s feedback informativeness,
incorporating diverse feedback types, including demonstrations,
comparisons, E-stops, and corrections. We extend demonstration
sufficiency evaluation—determining whether enough feedback
has been received to ensure reliable policy learning—to these
modalities, empirically analyzing their impact on the robot’s
learning progress and policy confidence. Additionally, we compare
entropy-based and regret-based stopping criteria for determining
feedback sufficiency, finding that the regret-based approach
offers more reliable performance across feedback types. Through
empirical and theoretical analysis, we compare the theoretical
representational power and empirical effectiveness of different
feedback types. Our findings enable robots to better self-
assess their performance and empower humans to deliver more
informative feedback, enhancing mutual understanding in human-
robot collaboration. Through theoretical analysis and experiments,
our work provides a novel foundational understanding of feedback-
driven reward learning.

I. INTRODUCTION

In human-robot interaction, a robot’s ability to autonomously
assess its performance is crucial for safe and efficient collabo-
ration, particularly in safety-critical domains like autonomous
driving and assistive robotics. Such self-assessment enables
robots to determine whether they have received sufficient
human feedback to learn a reliable policy or if additional input
is needed, reducing reliance on costly or infeasible human
supervision. Simultaneously, from the human teacher’s perspec-
tive, understanding the informativeness of their feedback—
such as demonstrations, pairwise preferences, E-stops, or
corrections—can enhance their ability to provide effective
guidance and improve mutual. Despite the importance of these
dual perspectives, prior work has rarely addressed both the
learner’s (robot’s) self-assessment and the teacher’s (human’s)
feedback informativeness within a unified framework that
leverages diverse feedback types.

From the learner’s perspective, prior work utilizes Bayesian
Inverse Reinforcement Learning (BIRL) to tackle robot self-
assessment by maintaining a belief distribution over the
human’s unobserved reward function and evaluating policy

regret—the performance gap between learned and optimal
policies [32]. However, prior work is limited to demonstrations
and does not account for other feedback modalities, such as
preferences, E-stops, or corrections, which humans naturally
provide in real-world interactions [16, 25]. This limitation
hinders comprehensive self-assessment, especially for complex
tasks where demonstrations are challenging to provide due
to task intricacy or equipment constraints [33]. From the
learner’s perspective, prior work in active learning has also
explored how robots can actively elicit feedback to enhance
learning [4]. Bıyık et al. [5] used information gain in active
learning to select preference queries and halt querying. We
adapt Bıyık et al. [5]’s active learning stopping criterion, which
captures reward function uncertainty via information gain, for
our passive learning self-assessment problem, and investigate
whether monitoring reward function uncertainty reduction via
information gain is a good indicator for feedback sufficiency.

From the teacher’s perspective, understanding the informa-
tiveness of feedback modalities—such as E-stops, corrections,
demonstrations, and pairwise preferences—is critical for pro-
viding AI systems with effective human guidance. Prior work
has explored reward ambiguity through human preference
modeling [19, 30] and demonstrated that ranked demonstrations
reduce ambiguity more effectively than unranked ones [8].
However, analyzing diverse feedback modalities’ effectiveness
and theoretical representation power in reducing reward am-
biguity remains unexplored. Our work addresses this gap by
empirically and theoretically analyzing e-stops, corrections,
demonstrations, and pairwise preferences, finding that pairwise
preferences are the most effective in reducing reward ambiguity,
followed by corrections, then demonstrations, with E-stops
being the least effective. Surprisingly, demonstrations lead to
low representational power, yet they are highly effective due
to the number of implicit comparisons they produce. These
findings enable human teachers to provide more informative
feedback to AI systems, enhancing efficiency and mutual
understanding.

In summary, we make the following contributions: (1)
Unified evaluation of diverse feedback modalities: We are the
first to study self-assessment sufficiency by extending demon-
stration sufficiency to incorporate diverse human feedback
types, including demonstration, pairwise comparisons, E-stops,
and corrections. (2) Comparison of stopping criteria for



feedback sufficiency: We compare two stopping criteria for
feedback sufficiency: an entropy-based approach that leverages
normalized information gain to assess reward function uncer-
tainty and a regret-based approach. The regret-based criterion
offers more reliable and practical stopping conditions across
diverse feedback types. (3) Empirical and theoretical analysis
of reducing reward ambiguity: We assess the effectiveness of
pairwise preferences, corrections, demonstrations, and E-stops
in reducing reward ambiguity, measured as the volume of the
feasible reward region, and provide the first categorization of
feedback types based on their theoretical reward representation
and empirical performance. (4) Venn Diagram representation:
a Venn Diagram visualizing the subset relationships among
these feedback types as pairwise comparisons.

II. RELATED WORK

Our work explores reward learning from diverse human
feedback types—including demonstrations, pairwise prefer-
ences, E-stops, and corrections—considering both the learner’s
(robot’s) and the teacher’s (human’s) perspectives. Notably,
none of the related works below comprehensively addresses
these viewpoints within the context of diverse feedback types.

A. Learner’s Perspective: Diverse Feedback Learning and
Autonomous Assessment

Prior work explores reward learning from diverse human
feedback in reinforcement learning including rankings[6, 27],
pairwise preferences[34, 11], and corrections [24, 33]. Mehta
and Losey [25] combines demonstrations, corrections, and
preferences. Ghosal et al. [13] models human rationality via
a rationality coefficient. Ibarz et al. [15] and Bıyık et al. [5]
learn rewards from pairwise preferences and demonstrations.
Jeon et al. [16] and Metz et al. [26] propose unified approaches
for reward learning from different human feedback types, but
differ from our work which focuses on learner self-assessment
and an analysis of teacher feedback informativeness.

There has been relatively little research on self-assessment
when an AI system employs reward learning. Norton et al.
[28], Burghouts et al. [9] focus on communicating uncertainty
to humans, not integrating feedback for learning. Koenig et al.
[20], Hayes et al. [14] emphasize learning from demonstrations,
neglecting continuous self-assessment. Trinh et al. [32] use
BIRL to assess demonstration sufficiency, omitting other
feedback types. By contrast, our framework integrates pairwise
preferences, corrections, demonstrations, and E-stops into
autonomous self-assessment. A large body of research has
focused on active learning, where the learner actively queries
humans for specific feedback to obtain the most informative
input [1, 3, 4, 2, 12]. These approaches often use information-
theoretic objectives—such as maximizing expected information
gain—to guide both query selection and stopping decisions. For
example, Bıyık et al. [5] proposes selecting preference queries
that maximize mutual information between human responses
and the reward function, coupled with an optimal stopping
rule based on information gain. In contrast, our work studies
feedback sufficiency in a passive learning setting, where the

agent does not actively generate queries. We provide the first
comparison between information gain and regret as stopping
criteria for determining feedback sufficiency across different
feedback types.

B. Teacher’s Perspective: Reward Ambiguity and Pedagogic
Teaching

From the teacher’s perspective, understanding reward am-
biguity is critical for providing feedback that effectively
guides the robot. Recent studies[19, 30] provide insights
into reward ambiguity through human preference modeling
and policy optimization invariance, respectively, but they do
not examine how different feedback types vary in reducing
this ambiguity and a comprehensive framework for analyzing
various feedback modalities is lacking. This gap complicates
assessing the informativeness of feedback types for reward
learning. Our work addresses this by comparing demonstration,
pairwise preferences, corrections, and E-stops. We find that
pairwise preferences most effectively reduce reward ambiguity,
constraining the feasible reward parameter space, followed by
corrections, demonstrations, and E-stops. These findings extend
the theoretical contributions of Knox et al. [19], Skalse et al.
[30] to a broader set of feedback modalities. Beyond resolving
reward ambiguity, the teacher’s perspective also involves
designing pedagogically informative feedback. Prior work has
focused on the teacher’s role in crafting maximally informative
demonstrations, often assuming the teacher knows the learner’s
algorithm and target reward function [7, 10, 18, 35, 21].
However, none of these studies addresses both the learner’s
and teacher’s perspectives in the context of diverse feedback
types. Our work fills this gap by integrating both viewpoints,
enabling robots to self-assess their performance and analyze
reward ambiguity from diverse feedback.

III. PRELIMINARIES

A. Markov Decision Processes

We model the environment as an MDP with states S , actions
A, transition function T : S ×A×S → [0, 1], reward function
r : S → R, initial state distribution µ, and discount factor
γ ∈ [0, 1). A policy π maps states to action distributions. The
expected return of π under r is V π

r = Es∼µV
π
r (s), where

V π
r (s) = Eπ[

∑∞
t=0 γ

tr(st) | s0 = s] and the Q-value function
is Qπ

R(s, a) = r(s)+γ
∑

s′ T (s, a, s
′)V π

r (s′). Following prior
work [5, 13, 32, 7, 19], we assume r is a linear function
of features, r(s) = wTϕ(s), where ϕ(s) ∈ Rk represents
state features. We define Ξ as the trajectory class, consisting
of all possible finite trajectories ξ = (s0, s1, . . . , sT ) with
s0 ∼ µ, where for each t = 0, . . . , T −1, there exists an action
at ∈ A such that st+1 ∼ T (st, at, ·), and T ≤ Tmax for some
maximum trajectory length Tmax.

B. Human Feedback Types

We model feedback using the reward-rational choice frame-
work [16], where each instance is a choice c ∈ C mapped
to trajectories in Ξ via a grounding function ψ : C → Ξ,
constraining plausible reward functions.



Demonstrations: Choices of state-action pairs, with C =
S ×A, ψ(s, a) = (s, a). Likelihood:

P (ξ | r, β) =
∏

(st,at)∈ξ

exp(β Q(st, at | r))∑
b∈A exp(β Q(st, b | r))

. (1)

Comparisons: Choices between trajectories ξA, ξB ∈ Ξ,
with C = {ξA, ξB}, ψ(ξi) = ξi. Preference probability:

P (ξA | r, β) = exp(β r(ξA))

exp(β r(ξA)) + exp(β r(ξB))
. (2)

E-stop: Binary choice to halt (off) or continue a trajectory
ξR at time t, with C = {off,−}, ψ(off) = ξhalted, ψ(−) = ξR,
where ξhalted = ξ0:tR ξtR . . . ξ

t
R. Likelihood:

P (off | r, β) = exp(β r(ξhalted))

exp(β r(ξhalted)) + exp(β r(ξR))
. (3)

Corrections: Comparison of a corrected trajectory ξcorrected to
the robot’s ξR, with C = {ξR, ξcorrected}, ψ(ξ) = ξ. Likelihood:

P (ξcorrected | r, β) = exp(β r(ξcorrected))

exp(β r(ξcorrected)) + exp(β r(ξR))
. (4)

C. Value-at-Risk Bounds
Value-at-Risk is a probabilistic measure of worst-case

performance [31, 17]. The α-Value-at-Risk (α-VaR) is the
α-worst-case value of a random variable Z, defined as

να(Z) = F−1
Z (α) = inf{z : FZ(z) ≥ α} (5)

where FZ(z) = P (Z ≤ z) is the cumulative distribution
function of Z. The higher the α, the more risk-sensitive
the measure. We use α-VaR to estimate regret under an
unknown reward function, to provide risk-aware bound on
policy performance with tunable risk sensitivity.

IV. PROBLEM DEFINITION

We seek to enable an agent to determine whether the user has
received sufficient feedback to learn a policy that aligns with
the expert’s intended behavior, represented by the unobserved
reward function with weights w∗. To address the problem
of feedback sufficiency, we formulate this problem in two
different ways: (1) Regret-based feedback sufficiency and (2)
Entropy-based confidence feedback sufficiency.

A. Regret-Based Feedback Sufficiency
The regret-based approach assesses feedback sufficiency

by measuring how close the robot’s policy is to the expert’s
intended policy using normalized expected value difference
(nEVD) [32]:

nEV D(πrobot, w
∗) =

V ∗
w∗ − V πrobot

w∗

V ∗
w∗ − V πrand

w∗
, (6)

where πrand is a random policy. Normalized regret allows
interpretable thresholding by performance percentage. Since the
true reward function weights w∗ are unknown, we use Bayesian
inference [29] to sample from the posterior P (θ | H1:i), where
H1:i is the feedback history (e.g., demonstrations, preferences,
E-stops). These samples estimate regret via α-VaR bound,
declaring sufficiency when:

P (nEV D(πrobot, θ) ≤ ϵ | H1:i) ≥ α, θ ∼ P (θ | H1:i). (7)

B. Entropy-Based Confidence for Feedback Sufficiency

To compare with the regret-based stopping criterion, we
assess whether information gain [5], typically used in active
learning for preference query selection, can serve as an effective
stopping criterion for passive learning self-assessment, as
opposed to a regret-based approach [32]. We adopt a confidence-
based stopping criterion using entropy to measure uncertainty
in the reward posterior. Inspired by speech recognition [22, 23],
we define confidence as normalized entropy reduction:

F (w | H1:i) =
Hmax −H(w | H1:i)

Hmax −Hmin
(8)

where H(w | H1:i) is the entropy of the reward posterior after
i feedback instances, Hmax is the maximum entropy, and Hmin

is the minimum entropy, estimated via calibration experiments
(see Appendix F). Higher confidence (closer to 1) indicates
greater certainty. As direct entropy computation is intractable,
we approximate it using MCMC posterior samples, estimating
marginal likelihood via importance sampling with the harmonic
mean estimator:

Ĥ(w | H1:i) ≈ − 1

mi

mi∑
k=1

logP (H1:i | w(k))

− logAd − log

(
1

mi

mi∑
k=1

1

P (H1:i | w(k))

)
(9)

where P (H1:i | w(k)) is the feedback likelihood under
sampled reward w(k), mi is the number of samples, and
Ad = 2πd/2/Γ(d/2) is the d-dimensional unit sphere’s surface
area, required as reward weights satisfy ∥w∥ = 1, constraining
them to the unit sphere. Details are in Appendix A. The
agent halts querying when confidence F (w | H1:i) exceeds
threshold τ ∈ [0, 1], indicating sufficient feedback. We evaluate
threshold effectiveness across pairwise preferences, corrections,
demonstrations, and E-stops.

V. ANALYSIS OF FEEDBACK TYPES FROM THE TEACHER’S
PERSPECTIVE

To understand the role of feedback type in learning efficiency,
we first analyze how demonstrations, E-stops, pairwise com-
parisons, and correction feedback impact the feasible region
of reward parameters. A key aspect of understanding feedback
sufficiency is the feasible region, which defines the set of
reward parameters w that rationalize a given set of human
feedback. Formally, we represent this as:

HF =
⋂

(ξ≻ξ′)∈F

{
w | w⊤(Φξ − Φξ′) ≥ 0

}
, (10)

where Φ(ξ) =
∑T

t=0 γ
tϕ(st) is the expected discounted sum of

state features from ξ = (s0, s1, . . . , sT ), and F is feedback type
dependent. As noted previously, comparison, correction, and E-
stop feedback all provide explicit preferences over trajectories.
By contrast, demonstrations provide an infinite number of
implicit preferences of the form ξ∗ ⪰ ξ′,∀ξ′.



We define the reward ambiguity, G(HF ) = Volume(HF ),
as the volume of the intersection of half-spaces. Without loss
of generality, we assume ∥w∥2 = 1 to ensure this volume is
bounded. A smaller G(HF ) implies stronger constraints on
the reward parameters, reducing ambiguity. Different feedback
types influence this reduction to varying degrees: we find
that pairwise comparisons constrain the feasible region more
than E-stop, while correction feedback imposes even tighter
constraints than pairwise comparisons. In the following sections,
we present experimental results on reward ambiguity across
feedback types, followed by a theoretical analysis comparing
their relative informativeness.

A. Comparing Ambiguity of the Learned Reward Leveraging
Different Feedback Types

To visualize the informativeness of different feedback types
in reducing reward ambiguity, we conducted experiments in
a 2 × 3 grid environment with two features per cell and a
single terminal state at the bottom-right cell. We compared
four feedback types—demonstrations, pairwise preferences,
corrections, and E-stops—by analyzing their impact on the
feasible region of the learned reward function, visualized
in Figure 1. Details of the environment layout and the
methodology for generating these results are provided in
Appendix E.

The results show that, as expected, all feedback types include
the true reward value within their feasible regions, validating
their ability to capture the correct reward function. However,
the reward ambiguity G(HF ), measured as the volume of
the feasible region, varies significantly across feedback types.
Pairwise preferences (Figure 1a) yield the smallest G(HF ),
indicating the highest reduction in reward ambiguity due to their
total ranking of trajectories. Corrections (Figure 1b) produce
a moderately constrained region with a larger G(HF ) than
pairwise preferences, as they compare trajectories with the
same start state, unlike pairwise preferences’ comparisons
between any two trajectories, failing to capture the total
ranking. Demonstrations (Figure 1c) yield a larger G(HF )
than corrections but smaller than E-stops, as they compare
optimal trajectories to others but miss additional trajectory
comparisons, failing to capture the total ranking, as shown
theoretically by Brown et al. [8]. E-stops (Figure 1d) yield
the largest feasible region – and hence the highest G(HF )
– as they compare a trajectory halted at some point to the
full trajectory, indicating that early termination is preferable,
without comparing the original trajectory to others as pairwise
preferences do.

B. Teacher’s Perspective on Pairwise Preference vs. E-stop
Feedback

Motivated by our empirical findings in Section V-A, where
pairwise preferences led to lower reward ambiguity than E-stop
feedback, we now provide a theoretical explanation for this
phenomenon. Specifically, we analyze the geometric constraints
each feedback type imposes on the reward space and prove

why pairwise comparisons reduce ambiguity more effectively
than E-stops.

Consider an MDP with state space S and feature vectors
ϕ(s) ∈ Rk. For a trajectory ξ = (s0, . . . , sT ) ∈ Ξ, the
cumulative feature sum is Φ(ξ) =

∑T
t=0 ϕ(st). An E-stop

comparison, preferring stopping at time t < T , imposes
a constraint w⊤(Φ(ξ0:t) − Φ(ξ0:T )) ≥ 0, where w ∈ Rk,
∥w∥2 = 1. A trajectory ξ′ ∈ Ξ is distinct if it includes a state
s′ with ϕ(s′) /∈ span{ϕ(s0), . . . , ϕ(sT )}.

Lemma 1. A constraint on w imposed by an E-stop comparison
lies within the subspace span{ϕ(s0), . . . , ϕ(sT )}. In contrast,
a pairwise comparison between ξ and a distinct trajectory
ξ′ = (s′0, . . . , s

′
T ′) imposes a constraint that includes directions

outside span{ϕ(s0), . . . , ϕ(sT )}.

The proof of Lemma 1 is provided in Appendix B

Proposition 1. Let HE-stop be the feasible region of reward
parameters w ∈ Rk constrained by E-stop feedback, defined
as the set of w that satisfy constraints derived from preferring
halted trajectories ξhalted over trajectories ξ ∈ Ξ. Let Hpairwise

be the feasible region constrained by pairwise preferences,
defined as the set of w that satisfy constraints from comparing
a trajectory ξ ∈ Ξ to all other trajectories ξ′ ∈ Ξ. Then
Hpairwise ⊂ HE-stop. Consequently, the reward ambiguity, defined
as the volume of the feasible region, satisfies: G(Hpairwise) <
G(HE-stop), indicating that pairwise preferences reduce reward
ambiguity more than E-stop feedback.

C. Teacher’s Perspective on Pairwise Preference vs. Correction
Feedback

To understand the impact of different feedback types on re-
ward learning, we compare pairwise preferences and correction
feedback in the context of a Markov Decision Process (MDP).
Motivated by empirical observations that pairwise preferences
often lead to lower reward ambiguity than other feedback
types, we provide a theoretical explanation for why pairwise
preferences are more effective than correction feedback at
constraining the reward space.

Correction feedback involves comparing two trajectories that
start from the same initial state s0 ∼ µ. Given a trajectory
ξ = (s0, s1, . . . , sT ) in the trajectory class Ξ, a corrected
trajectory ξ′ = (s0, s

′
1, . . . , s

′
T ′) in Ξ starts at s0 but diverges at

some point (e.g., by taking a different action). If ξ′ is preferred
over ξ, this imposes a constraint on the reward parameters,
wT (Φ(ξ′)− Φ(ξ)) ≥ 0, where Φ(ξ) =

∑T
t=0 γ

tϕ(st).
In contrast, pairwise preferences involve comparing any two

trajectories ξ and ξ′ in the trajectory class Ξ, regardless of
their starting states. This comparison imposes a constraint
wT (Φ(ξ)− Φ(ξ′)) ≥ 0, allowing preferences between trajec-
tories from different parts of the state space.

Proposition 2. Let Hcorrection be the feasible region of reward
parameters w ∈ Rk constrained by correction feedback, defined
as the set of w that satisfy constraints from comparing a
trajectory ξ ∈ Ξ to corrected trajectories ξcorrected ∈ Ξ
starting from the same initial state. Let Hpairwise be the feasible
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Fig. 1: Feasible reward regions for different feedback types in a 2× 3 grid environment with a terminal state at the bottom-right
cell. Subfigures (a) to (d) depict the regions for pairwise preferences, corrections, demonstrations, and E-stops, respectively,
ordered by increasing reward ambiguity G(HF ), with the black dot indicating the ground-truth reward parameter.

region constrained by pairwise preferences, defined as the set
of w that satisfy constraints from comparing ξ ∈ Ξ to all other
trajectories ξ′ ∈ Ξ. Then: Hpairwise ⊂ Hcorrection. Consequently,
the reward ambiguity, defined as the volume of the feasible
region, satisfies: G(Hpairwise) < G(Hcorrection), indicating that
pairwise preferences reduce reward ambiguity more effectively
than correction feedback.

The proof of Preposition 1 and Preposition 2 is provided in
Appendix C and Appendix D respectively.

VI. EXPERIMENTS FROM THE LEARNER’S PERSPECTIVE

We conduct two sets of experiments to support our claims.
Each subsequent subsection presents a set of experiments
and tests the relevant hypotheses. We conduct experiments to
evaluate the learner’s ability to determine feedback sufficiency
in a passive learning setting, using diverse human feedback
types (demonstrations, pairwise preferences, corrections, and E-
stops) in a simulated gridworld environment. Our experiments
assess the effectiveness of the normalized expected value
difference (nEVD) stopping criterion and compare it with the
normalized entropy criterion and a convergence baseline.

A. Experimental Setup

We evaluate feedback sufficiency in a passive learning setting
using a gridworld environment with demonstrations, pairwise
preferences, corrections, and E-stops. Two experiments test: (1)
Feedback effect on sufficiency declaration: Using the nEVD
stopping criterion, we measure how quickly each feedback type
achieves low regret via α-VaR bounds. (2) Comparison of
stopping criteria: We compare nEVD with entropy-based and
convergence baseline criteria [32], where convergence declares
sufficiency when the policy (π) stabilizes.

B. Feedback Effect on Sufficiency Declaration

We investigate how different feedback modalities affect the
learner’s ability to declare feedback sufficiency, i.e., when
the robot determines it has received enough feedback to
learn a low-regret policy. We use the normalized nEVD α-
VaR bound, which measures the performance gap between
the learned and optimal policies under uncertainty, as the
criterion for sufficiency. A lower nEVD α-VaR bound indicates
higher confidence in the learned policy. We test the following

hypotheses: H1: The learner relies on a greater number of
pairwise comparisons than demonstrations when the agent
declares feedback sufficiency; H2: The learner depends on
more E-stop feedback instances than pairwise comparisons
when the agent declares feedback sufficiency; H3: The learner
requires more pairwise preferences than corrections when the
agent declares feedback sufficiency.

Figure 2 shows nEVD α-VaR bounds, averaged over 20
seeds, with 15 demonstrations and 40 instances each of
pairwise preferences, corrections, and E-stops. Demonstrations
(Figure 2d) drop to near zero after 4 instances, reflect-
ing optimal trajectory information, outperforming pairwise
preferences (Figure 2a), which drop initially but stabilize
above zero due to partial trajectory comparisons, supporting
H1. Partial preferences, unlike total rankings [8], reduce
informativeness, diverging from the teacher’s perspective.
Pairwise preferences decline steadily, while E-stops (Figure 2c)
fluctuate without convergence, as their partial constraints limit
policy improvement, supporting H2. Proposition 1 confirms
E-stops’ greater ambiguity, aligning perspectives. Corrections
outperform pairwise preferences (Figure 2b), achieving lower
regret faster, supporting H3. This contrasts the teacher’s
perspective, where pairwise preferences reduce ambiguity more
(Proposition 2), as few comparisons prevent full trajectory
ranking and corrections excel in goal-reaching tasks.

C. Comparison of Stopping Criteria
We examine how feedback modalities (demonstrations,

pairwise preferences, corrections, E-stops) affect posterior
convergence, measured by normalized entropy, and evaluate
nEVD, entropy-based, and convergence-based stopping criteria
for feedback sufficiency. The hypotheses we test are: H4:
Normalized entropy increases and converges to 1 fastest with
demonstrations, followed by pairwise preferences, corrections,
and E-stops; H5: The nEVD stopping criterion outperforms
entropy-based and convergence-based criteria in F1 scores in
the majority of feedback modalities.

Figure 3 shows normalized entropy of the reward distribution
averaged over twenty seeds, with informativeness order (demon-
strations > pairwise preferences > corrections > E-stops) sup-
porting H4. Demonstrations increase normalized entropy faster
than pairwise preferences, which fail to reach demonstration
levels despite double instances. This deviates from the teacher’s
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Fig. 2: Effect of pairwise preferences, correction, E-stop, and demonstration feedback on nEVD in the grid world environment,
with results averaged over twenty seeds. The subfigures show: Pairwise Preference nEVD (2a), Correction nEVD (2b), E-stop
nEVD (2c), and Demonstration nEVD (2d), illustrating how nEVD evolves as more feedback is provided.
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perspective due to partial preferences’ lack of total ordering [8].
Pairwise preferences outpace corrections, which cannot capture
total ordering by comparing only same-start-state trajectories,
consistent with Proposition 2. Pairwise preferences surpass
E-stops, whose entropy fluctuates minimally, aligning with
Proposition 1. For H5, Appendix Table I in Section G shows
nEVD’s higher F1 scores across all modalities compared to
entropy-based criteria. Unlike entropy-based criteria, nEVD
excels because low-regret policies can be learned despite high
reward uncertainty (small normalized entropy). So we can see,
from our comparison, that nEVD enabled low-regret policies
without requiring reward distribution convergence, prioritizing
policy performance over reward certainty. This makes entropy-
based criteria less effective for self-assessment, as high un-
certainty is tolerable with strong policies, favoring nEVD’s
effectiveness. However, convergence outperforms nEVD for E-
stops (F1: 0.07 vs. nEVD’s 0.05) by detecting sufficiency when
normalized entropy stabilizes for p consecutive steps. E-stops’
fluctuating, minimally changing entropy allows convergence
to trigger, despite suboptimal policies with high nEVD. See
Appendix H for F1 calculation, implementation, and criterion
thresholds.

As discussed earlier, we propose to view all feedback types
as special types of pairwise comparisons of the form ξA ≻ ξB
as shown in Appendix Figure 6. One of our contributions
is to characterize the relationships between the explicit and
implicit pairwise comparisons induced by different feedback
types. These relationships are shown in Figure 4. We describe

Fig. 4: The relationships between the sets of all implicit or
explicit pairwise comparisons that result from different forms
of human feedback.
the subset and superset nature of the different feedback
types as follows: Demonstrations induce an infinite set of
pairwise comparisons: ξ∗ ⪰ ξ′, ∀ξ′. If ξ∗ is a prefix of ξ′,
then the corresponding pairwise comparison is also in the
set of implicit pairwise comparisons that result from an e-
stop. Otherwise, the pairwise comparison is not in the set of
implicit comparisons that result from e-stops. E-Stops induce
an implicit pairwise comparison: ξhalted ≻ ξR. If ξhalted is
an optimal trajectory, then this pairwise comparison is also
contained in the set of implicit pairwise comparisons that result
from demonstrations. Otherwise, the pairwise comparison is not
contained in the demonstration set since the preferred trajectory
is not optimal. Corrections are of the form ξcorrected ≻ ξR
where both trajectories start at the same state. Thus the
implicit pairwise comparisons that result from a demonstration,
ξ∗ ⪰ ξ′, ∀ξ′ are all special cases of correction feedback
where the more preferred trajectory is optimal. The pairwise
comparison implicit in an E-Stops, ξhalted ≻ ξR, is also a
special case of a correction feedback since both ξR and ξhalted
start at the same state. Comparisons are of the form ξA ≻ ξB ,
with no constraints on the trajectories. Thus, all other feedback
types can be interpreted as special cases of comparisons and
thus comparisons subsume the other feedback types.

VII. CONCLUSION AND FUTURE WORK

We present a unified framework integrating robot self-
assessment and human feedback informativeness across demon-
strations, pairwise preferences, E-stops, and corrections. Our



analyses show pairwise preferences best reduce reward ambi-
guity, followed by corrections, demonstrations, and E-stops,
with regret-based stopping criteria outperforming entropy-
based ones. These findings enhance human-robot collaboration.
Future work will explore feedback burden vs. informativeness,
considering human effort (e.g., low-effort E-stops vs. high-
effort demonstrations).
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APPENDIX

A. Detailed Derivation of Entropy

The posterior entropy is defined as:

H(w|H1:i) = −EP (w|H1:i) [logP (w|H1:i)] . (11)

Using Bayes’ theorem:

P (w|H1:i) =
P (H1:i|w)P (w)

P (H1:i)
, (12)

we obtain:

logP (w|H1:i) = logP (H1:i|w) + logP (w)

− logP (H1:i). (13)

We assume a uniform prior over the unit sphere, where the
probability density P (w) is:

P (w) =
1

Ad
, Ad =

2πd/2

Γ(d/2)
, (14)

and Ad is the surface area of the d-dimensional unit sphere.
Here, Γ(d/2) is the Gamma function, defined as Γ(z) =∫∞
0
tz−1e−t dt for z > 0, ensuring normalization of the

uniform prior.
Given a uniform prior, logP (w) = − logAd, so:

H(w|H1:i) = −EP (w|H1:i) [logP (H1:i|w)]
− logAd + logP (H1:i). (15)

To approximate the expectation, we use mi MCMC posterior
samples {w(k)}mi

k=1 ∼ P (w|H1:i):

EP (w|H1:i) [logP (H1:i|w)]

≈ 1

mi

mi∑
k=1

logP (H1:i|w(k)). (16)

Direct computation of the marginal likelihood:

P (H1:i) =

∫
P (H1:i|w)P (w) dw, (17)
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is challenging due to the high-dimensional parameter space
w ∈ Rd with ∥w∥ = 1. Importance Sampling addresses this
by using posterior samples from MCMC, avoiding additional
prior sampling.

Using the Harmonic Mean Estimator (HME), we exploit the
identity:

EP (w|H1:i)

[
1

P (H1:i|w)

]
=

1

P (H1:i)
, (18)

yielding:

P̂ (H1:i) =

(
1

mi

mi∑
k=1

1

P (H1:i|w(k))

)−1

. (19)

Its logarithm is:

log P̂ (H1:i) = − log

(
1

mi

mi∑
k=1

1

P (H1:i|w(k))

)
. (20)

The posterior entropy estimate is:

Ĥ(w|H1:i) ≈ − 1

mi

mi∑
k=1

logP (H1:i|w(k))

− logAd − log

(
1

mi

mi∑
k=1

1

P (H1:i|w(k))

)
.

(21)

B. Proof of Lemma 1
Lemma. (Restatement of Lemma 1) A constraint on w
imposed by an E-stop comparison lies within the sub-
space span{ϕ(s0), . . . , ϕ(sT )}. In contrast, a pairwise
comparison between ξ and a distinct trajectory ξ′ =
(s′0, . . . , s

′
T ′) imposes a constraint that includes directions

outside span{ϕ(s0), . . . , ϕ(sT )}.

Proof: Step 1: E-stop constraints are confined to a
single subspace.

The feature sum of a trajectory halted at t is Φ(ξ0:t) =∑t
i=0 ϕ(si), while the feature sum of the full trajectory is

Φ(ξ0:T ) =
∑T

i=0 ϕ(si). Apparently, they are both linear
combinations of {ϕ(s0), . . . , ϕ(st)}, and therefore we have
Φ(ξ0:t),Φ(ξ0:T ) ∈ span{ϕ(s0), . . . , ϕ(sT )}. As a result, we
have

Φ(ξ0:t)− Φ(ξ0:T ) ∈ span{ϕ(s0), . . . , ϕ(sT )}. (22)

In other words, the constraint w⊤(Φ(ξ0:t)−Φ(ξ0:T )) ≥ 0 lies
within this subspace.

Step 2: Pairwise comparisons introduce new directions.
Consider a distinct trajectory ξ′ = (s′0, . . . , s

′
T ′) containing

state s′ such that ϕ(s′) /∈ span{ϕ(s0), . . . , ϕ(sT )}. Since ϕ(s′)
has a component not in this span, Φ(ξ′) =

∑T ′

t=0 ϕ(s
′
t), which

includes ϕ(s′), does too. Thus, the difference

Φ(ξ0:T )− Φ(ξ′) /∈ span{ϕ(s0), . . . , ϕ(sT )}. (23)

In other words, the constraint w⊤(Φ(ξ0:T ) − Φ(ξ′)) ≥ 0
imposes a condition in a new direction, unachievable by E-stop
constraints confined to span{ϕ(s0), . . . , ϕ(sT )}.

C. Proof of Proposition 1

Proposition. (Restatement of Proposition 1) Let HE-stop be the
feasible region of reward parameters w ∈ Rk constrained
by E-stop feedback, defined as the set of w that satisfy
constraints derived from preferring halted trajectories ξhalted

over trajectories ξ ∈ Ξ. Let Hpairwise be the feasible region
constrained by pairwise preferences, defined as the set of w
that satisfy constraints from comparing a trajectory ξ ∈ Ξ
to all other trajectories ξ′ ∈ Ξ. Then Hpairwise ⊂ HE-stop.
Consequently, the reward ambiguity, defined as the volume
of the feasible region, satisfies: G(Hpairwise) < G(HE-stop),
indicating that pairwise preferences reduce reward ambiguity
more than E-stop feedback.

Proof: Step 1: Define feasible regions Consider an MDP
with state space S, action space A, initial state distribution
µ, and feature mapping ϕ : S → Rk. Trajectories from the
trajectory class Ξ have different lengths (i.e., they may consist
of varying numbers of states) and start from the initial state
distribution µ.

- E-stop Feedback: If we have E-stop trajectories for all
trajectories in Ξ, the feasible region is the intersection of half-
spaces over all trajectories and their early-stopping variants:

HE-stop =
⋂
ξi∈Ξ

ξstop
i ≻ξi

{
w | w⊤(Φξstop

i
− Φξi) ≥ 0

}
, (24)

where ξstop
i denotes a trajectory that follows ξi but stops early,

and ξstop
i ≻ ξi indicates the preference under E-stop feedback.

- Pairwise Comparisons: If we have all possible pairwise
comparisons for trajectories in Ξ, resulting in a total ordering
over Ξ, the feasible region is:

Hpairwise =
⋂

ξi≻ξj
ξi,ξj∈Ξ

{
w | w⊤(Φξi − Φξj ) ≥ 0

}
, (25)

where ξi ≻ ξj denotes the preference in the total ordering over
all trajectories in Ξ.

Step 2: Show inclusion of feasible regions
To show that Hpairwise ⊆ HE-stop, observe that every E-stop

constraint w⊤(Φξstop
i

−Φξi) ≥ 0 for ξstop
i ≻ ξi is also a pairwise

comparison constraint since ξstop
i can be considered a trajectory

in Ξ. Therefore, the set of constraints defining Hpairwise includes
all E-stop constraints, implying that any w in Hpairwise also
satisfies the E-stop constraints, so Hpairwise ⊆ HE-stop.

Step 3: Demonstrate strict inclusionConsider the trajectory
class Ξ, where each trajectory ξi ∈ Ξ is a sequence of states
(si,0, si,1, . . . , si,Ti

). By Lemma 1, an E-stop constraint for ξi,
given by w⊤(Φξstop

i
−Φξi) ≥ 0, where ξstop

i is an early-stopping
variant, lies within the subspace span{ϕ(s) | s ∈ ξi}. Thus,
HE-stop =

⋂
ξi∈Ξ,ξstop

i ≻ξi
{w | w⊤(Φξstop

i
− Φξi) ≥ 0} is defined

by constraining each local to a trajectory’s subspace.
In contrast, pairwise preferences involve comparisons ξi ≻ ξj

for any ξi, ξj ∈ Ξ, yielding constraints w⊤(Φξi − Φξj ) ≥ 0.
Suppose ξj is a distinct trajectory containing a state s′ such
that ϕ(s′) /∈ span{ϕ(s) | s ∈ ξi}. By Lemma 1, the vector



Φξi − Φξj includes components outside span{ϕ(s) | s ∈ ξi},
imposing a constraint in a direction not covered by any E-
stop constraint on ξi. Across the trajectory class Ξ, which
contains diverse trajectories potentially visiting distinct sets
of states, each pairwise comparison between trajectories with
non-overlapping or partially overlapping states introduces such
unique constraints.

Since Hpairwise aggregates all such pairwise constraints, it
enforces relationships across the feature spaces of different
trajectories, unlike HE-stop, which remains confined to trajectory-
specific subspaces. This additional network of constraints
ensures that there exists a w ∈ HE-stop satisfying all E-stop
constraints (i.e., w⊤(Φξstop

i
− Φξi) ≥ 0 for all ξi) but violating

at least one pairwise constraint, such as w⊤(Φξi − Φξj ) < 0
for some ξi ≻ ξj , where ξj introduces a new feature direction.
Thus, w /∈ Hpairwise, proving that Hpairwise ⊂ HE-stop.

Step 4: Analyze reward ambiguity
The reward ambiguity G(HF ) is defined as the volume

of the feasible region HF . Since Hpairwise ⊂ HE-stop, and the
additional constraints in Hpairwise reduce the volume of the
feasible region, we have:

G(Hpairwise) < G(HE-stop).

This indicates that pairwise comparisons provide stricter
constraints on the reward parameters, thereby reducing the
ambiguity in the reward function more effectively than E-
stop feedback. We have shown that the feasible region under
pairwise comparisons is a strict subset of the feasible region
under E-stop feedback, leading to a smaller reward ambiguity.
This completes the proof of Proposition 1.

D. Proof of Proposition 2

Proposition. (Restatement of Proposition 2) Let Hcorrection be
the feasible region of reward parameters w ∈ Rk constrained
by correction feedback, defined as the set of w that satisfy
constraints from comparing a trajectory ξ ∈ Ξ to corrected
trajectories ξcorrected ∈ Ξ starting from the same initial
state. Let Hpairwise be the feasible region constrained by
pairwise preferences, defined as the set of w that satisfy
constraints from comparing ξ ∈ Ξ to all other trajectories
ξ′ ∈ Ξ. Then: Hpairwise ⊂ Hcorrection. Consequently, the
reward ambiguity, defined as the volume of the feasible region,
satisfies: G(Hpairwise) < G(Hcorrection), indicating that pairwise
preferences reduce reward ambiguity more effectively than
correction feedback.

Proof: Step 1: Define feasible regions
Consider an MDP with state space S, action space A,

initial state distribution µ, and feature mapping ϕ : S → Rk.
Trajectories from the trajectory class Ξ have different lengths
(i.e., they may consist of varying numbers of states) and start
from the initial state distribution µ.

- Correction Feedback: The feasible region is defined by
constraints from comparing a trajectory ξi ∈ Ξ to a corrected
trajectory ξcorr ∈ Ξ that starts from the same initial state s0,

with ξcorr ≻ ξi:

Hcorrection =
⋂

ξi,ξcorr∈Ξ
s0=s′0
ξcorr≻ξi

{
w | w⊤(Φξcorr − Φξi) ≥ 0

}
,

where s0 and s′0 are the starting states of ξi and ξcorr.
- Pairwise Preferences: The feasible region is defined by

constraints from comparing all pairs of trajectories in Ξ,
assuming a total ordering:

Hpairwise =
⋂

ξi≻ξj
ξi,ξj∈Ξ

{
w | w⊤(Φξi − Φξj ) ≥ 0

}
.

Step 2: Show inclusion of feasible regions
Every correction feedback constraint w⊤(Φξcorr − Φξi) ≥

0, where ξcorr ≻ ξi and both start at s0, is also a pairwise
preference constraint, since ξcorr, ξi ∈ Ξ. Thus, the set of
constraints defining Hpairwise includes all correction feedback
constraints. Therefore, any w ∈ Hpairwise satisfies all correction
constraints, implying:

Hpairwise ⊆ Hcorrection.

Step 3: Demonstrate strict inclusion
To show that the inclusion Hpairwise ⊆ Hcorrection is strict,

we need to demonstrate that there exists a weight vector
w ∈ Hcorrection that is not in Hpairwise, thus proving Hpairwise ⊂
Hcorrection.

Let ξa = (sa, sa2 , . . . , sam) be a trajectory starting at state
sa, ξc = (sa, sc2 , . . . , scn) be another trajectory starting at sa
with subsequent states distinct from ξa’s (i.e., sci ̸= saj

for
all i, j ≥ 2), sharing only sa, and ξb = (sb, sb2 , . . . , sbp) be a
trajectory starting at sb ̸= sa, with no states shared with ξa
(i.e., s /∈ ξa for all s ∈ ξb, and vice versa).

For correction feedback, consider the preference ξc ≻ ξa,
which is valid since both trajectories start at sa. This imposes
the constraint:

w⊤(Φξc − Φξa) ≥ 0,

where Φξ =
∑

s∈ξ ϕ(s) represents the sum of feature vectors
over the states in trajectory ξ. Define v = Φξc − Φξa . Since
ξc and ξa share the starting state sa, the terms ϕ(sa) cancel
out, so:

v =
∑

s∈ξc\{sa}

ϕ(s)−
∑

s∈ξa\{sa}

ϕ(s).

The correction feasible region includes all w satisfying w⊤v ≥
0, with ∥w∥2 = 1.

For pairwise preferences, consider the preference ξa ≻ ξb,
which imposes the constraint:

w⊤(Φξa − Φξb) ≥ 0.

Define u = Φξa −Φξb . Since ξa and ξb do not share any states,
we have:

u =
∑
s∈ξa

ϕ(s)−
∑
s∈ξb

ϕ(s).

The feature vectors in ξb introduce components that are distinct
from those in ξa due to the absence of shared states.



Suppose ξb visits a state s′ ∈ ξb such that ϕ(s′) /∈
span{ϕ(s) | s visited by ξa}. Because ξa and ξb share no
states, and ϕ(s′) is linearly independent of the feature vectors
in ξa, the vector u includes a component outside the span of
v, which depends only on states in ξa \ {sa} and ξc \ {sa}.
This introduces a constraint in a new direction not present in
Hcorrection. There exists a w ∈ Hcorrection that satisfies all same-
start-state constraints (e.g., w⊤v ≥ 0) but violates the pairwise
constraint w⊤u ≥ 0 (e.g., w⊤u < 0), so w /∈ Hpairwise. Thus:

Hpairwise ⊂ Hcorrection.

Step 4: Analyze reward ambiguity
The reward ambiguity G(HF ) is the volume of the feasible

region. Since Hpairwise ⊂ Hcorrection, and pairwise preferences
impose additional constraints (e.g., from different starting
states), the volume of Hpairwise is strictly smaller:

G(Hpairwise) < G(Hcorrection).

This shows that pairwise preferences constrain the reward
parameters more tightly, reducing ambiguity more effectively
than correction feedback. This completes the proof.

E. Feasible Region Construction

Our experimental setup simulates a human teacher providing
feedback to a robot navigating a 2× 3 grid environment, as
illustrated in Figure 5.

0 1 2

3 4 5

w2 w1 w2

w2 w2 w2

⋆

Fig. 5: Layout of the 2 × 3 grid environment. States are
numbered 0 to 5 from the top-left corner, with colors indicating
features ("Blue" or "Red"). The bottom-right cell (state 5) is
the terminal state, marked with a green star.

The robot learns a reward function based on feedback, with
the feasible region representing the set of possible reward
parameters (w1, w2) consistent with the input. To ensure
consistency across feedback types, we first generated 3,000,000
random trajectories with a maximum length of 10, which
were then used to produce E-stops, corrections, and pairwise
preferences, while demonstrations were generated separately.

Feedback was generated as follows: Demonstrations (Fig-
ure 1c) were created by determining optimal trajectories from
each non-terminal state, selecting actions that maximize ex-
pected rewards until the terminal state or a maximum step limit
was reached. Pairwise preferences (Figure 1a) were obtained
by comparing pairs based on their total rewards and ranking
the higher-reward trajectory as preferred, producing 3,000,000
comparisons. Corrections (Figure 1b) were simulated by taking
random trajectories and generating alternative trajectories from
the same starting state, selecting the one with the highest reward
as the improved path. E-stops (Figure 1d) were simulated
on 3,000,000 random trajectories by identifying unsafe states

where the robot should stop, based on a human rationality
model with a high confidence parameter and a discount factor
of 0.99.

The feasible regions were visualized by translating feedback
into constraints on the reward parameters. For demonstrations,
we generated 100 random trajectories from each non-terminal
state (states 0 to 4) and compared them to the optimal trajectory
from that state. These comparisons created constraints ensuring
the optimal trajectory had the highest reward.

Pairwise preferences imposed constraints that preferred
trajectories outscored others. Corrections required the improved
trajectories to have higher rewards, and E-stops excluded reward
parameters giving positive rewards to unsafe states. These
constraints formed a set of linear inequalities, and the feasible
region was the intersection of these inequalities, plotted in the
w1-w2 space. The regions’ sizes reflect the informativeness
order: pairwise preferences (narrowest), corrections (moderate),
demonstration (larger), and E-stops (largest), as shown in
Figures 1a, 1b, 1c, and 1d.

F. Normalizing Entropy

To estimate Hmax and Hmin, we conducted calibration
experiments for each feedback type (pairwise preferences,
corrections, demonstrations, and E-stops). For each feedback
type, we performed three independent experiments, tracking
the entropy H(w | H1:i) of the reward posterior after each
feedback instance. We then determined Hmax as the maximum
entropy observed across all experiments and all feedback types,
and Hmin as the minimum entropy observed. These values
were used to normalize the confidence metric as described in
Equation (8).

G. F1 Score Results

TABLE I: F1 scores for stopping criteria (5×5 gridworld)

Metric E-stop Corr. Demo Pref.

nEVD 0.05 0.14 0.89 0.20
Entropy 0.02 0.05 0.17 0.08

Conv. 0.07 0.09 0.75 0.07

H. Comparison of Stopping Criteria

We compare three stopping criteria in the feedback suffi-
ciency problem and demonstrate that the normalized expected
value difference (nEVD), as introduced in Equation 6, outper-
forms the normalized entropy and convergence criteria. The
normalized entropy criterion, defined in Equation 8, captures
the convergence of the posterior distribution over rewards,
while the convergence criterion focuses on policy stabilization.
We evaluate the performance of these criteria using the F1
score, with results summarized in Table I.



1) Identification Accuracy: To assess the accuracy of each
stopping criterion in declaring feedback sufficiency, we com-
pute the F1 score, which is the harmonic mean of precision
and recall. This metric balances the ability of each criterion to
correctly identify when sufficient feedback has been received.
For each criterion, we define true positives (TP), false positives
(FP), and false negatives (FN) as follows:

• True Positive (TP): The criterion correctly declares
feedback sufficiency when the condition for sufficiency is
satisfied.

• False Positive (FP): The criterion incorrectly declares
feedback sufficiency when the condition is not met.

• False Negative (FN): The criterion fails to declare
feedback sufficiency when the condition is satisfied.

For the nEVD criterion, sufficiency is declared when
P (nEV D(πrobot, θ) ≤ ϵ | H1:i) ≥ α, where θ ∼ P (θ | H1:i),
and the F1 score is calculated as:

F1nEVD =
TPnEVD

TPnEVD + 1
2 (FPnEVD + FNnEVD)

.

For the normalized entropy criterion, sufficiency is declared
when the confidence F (w | H1:i) ≥ τ , as defined in Equation 8,
with the F1 score given by:

F1entropy =
TPentropy

TPentropy +
1
2 (FPentropy + FNentropy)

.

For the convergence criterion, sufficiency is declared when
the policy remains unchanged over p consecutive steps, and the
F1 score is computed similarly based on policy stabilization.

2) Threshold Values: To ensure a fair comparison across
the stopping criteria, we evaluated each over a range of
threshold values and computed the average F1 score over these
ranges. This approach accounts for variability in performance
depending on the threshold settings.

For the nEVD criterion, we tested a range of threshold values
ϵ from 0.1 to 1.5 in increments of 0.1. The confidence level α
was fixed at 0.95.

For the normalized entropy criterion, we evaluated a range
of threshold values τ from 0.05 to 0.6 in increments of 0.05,
corresponding to confidence levels of 5% to 60% in the reward
posterior.

For the convergence criterion, we varied the number of
consecutive steps p from 1 to 5.

The F1 scores reported in Table I represent the averages
over these threshold ranges for each criterion, providing a
robust comparison of their effectiveness in declaring feedback
sufficiency.

I. Supplementary Figures

ξ′

ξ*

(a) Demonstration

 ξ B
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(b) Comparison

 ξ halted

 ξ R

(c) Estop

 ξ R

 ξ corrected

(d) Correction
Fig. 6: Feedback types: (a) Demonstration: ξ∗ ⪰ ξ′; (b)
Comparison: ξA ≻ ξB ; (c) E-stop: ξhalted ≻ ξR; (d) Correction:
ξcorrected ≻ ξR.
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