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Abstract—Generalist robots that can perform a range of
different tasks in open-world settings must be able to not only
reason about the steps needed to accomplish their goals, but
also process complex instructions, prompts, and even feedback
during task execution. Intricate instructions (e.g., “Could you
make me a vegetarian sandwich?” or “I don’t like that one”)
require not just the ability to physically perform the individual
steps, but the ability to situate complex commands and feedback
in the physical world. In this work, we describe a system that uses
vision-language models in a hierarchical structure, first reasoning
over complex prompts and user feedback to deduce the most
appropriate next step to fulfill the task, and then performing
that step with low-level actions. In contrast to direct instruction
following methods that can fulfill simple commands (“pick up
the cup”), our system can reason through complex prompts and
incorporate situated feedback during task execution (“that’s not
trash”). We evaluate our system across three robotic platforms,
including single-arm, dual-arm, and dual-arm mobile robots,
demonstrating its ability to handle tasks such as cleaning messy
tables, making sandwiches, and grocery shopping.

I. INTRODUCTION

A defining feature of intelligence is its flexibility: people not
only excel at complex tasks but also adapt to new situations,
modify behaviors in real time, and respond to diverse inputs,
corrections, and feedback. Achieving this kind of flexibility
is essential for robots in open-ended, human-centric environ-
ments. For instance, consider a robot tasked with tidying up
a table after a meal: instead of rigidly following a single
predefined set of steps, the robot would need to interpret dy-
namic prompts like “only take away someone’s dishes if they
are done eating,” respond to corrections like “leave it alone,”
and adapt when faced with unfamiliar challenges, such as a
delicate object that requires special handling. This paper aims
to advance robotic intelligence by enabling robots to interpret
and act on diverse natural language commands, feedback, and
corrections – a step towards creating agents that reason through
tasks, integrate human feedback seamlessly, and operate with
human-like adaptability. If we can enable a robot to process
and engage with complex natural language interaction, we can
unlock not only better instruction following, but also the ability
for users to guide a robot through new tasks and correct the
robot in real time.
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Achieving this level of flexibility and steerability in robotic
systems is challenging. While standard language-conditioned
imitation learning can follow simple, atomic instructions such
as “pick up the coke can” [4], real-world tasks are rarely
so straightforward. Imagine a more realistic prompt, such
as: “Could you make me a vegetarian sandwich? I’d prefer
it without tomatoes. Also, if you have ham or roast beef,
could you make a separate sandwich with one of those
for my friend?” This requires not only understanding the
language, but also the ability to situate commands within
the current context and compose existing skills (e.g., picking
up the roast beef) to solve a new task. If the robot further
receives corrections and feedback (“that’s not how you do
it, you have to get lower, otherwise you’ll keep missing”),
these must also be integrated dynamically into task execution.
This challenge resembles the distinction between Kahneman’s
“System 1” and “System 2” cognitive processes [15]. The
“automatic” System 1 corresponds to a policy capable of
executing straightforward commands by triggering pre-learned
skills, while the more deliberative System 2 involves higher-
level reasoning to parse complex long-horizon tasks, interpret
feedback, and decide on an appropriate course of action. Prior
work in robotic instruction following has largely focused on
atomic instructions [38, 14, 4], addressing only System 1-level
behaviors.

In this paper, we address the more intricate reasoning
needed for complex prompts and feedback by introducing a
hierarchical reasoning system for robotic control based on
vision-language models (VLMs). In our system, the robot
incorporates complex prompts and language feedback using
a VLM, which is tasked with interpreting the current ob-
servations and user utterances, and generating suitable verbal
responses and atomic commands (e.g., “grasp the cup”) to pass
into the low-level policy for execution. This low-level policy
is itself a vision-language model finetuned for producing
robotic actions, also known as a vision-language-action (VLA)
model [3, 5, 16, 42]. We expect that robot demonstrations
annotated with atomic commands will not be sufficient for
training the high-level model to follow complex, open-ended
prompts, and we therefore need representative examples of
complex prompt following. To acquire this data, we propose
to synthetically label datasets consisting of robot observations
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Fig. 1: Open-ended instruction following. Hi Robot enables robots to follow multi-stage instructions, adapt to real-time corrections and constraints, complete
unseen long-horizon tasks, and respond verbally when needed.

and actions with hypothetical prompts and human interjections
that might have been plausible for that situation. To this end,
we provide a state-of-the-art vision-language model with a
robot observation and target atomic command, and ask it to
come up with a prompt or human interaction that may have
preceded that observation and command, i.e. generating high-
level policy prompts for different outcomes. By incorporating
these synthetically-generated but situated examples into high-
level policy training, our approach generalizes to diverse
prompts and interjections while maintaining grounding in the
robot’s capabilities.

The main contribution of our paper is a hierarchical
interactive robot learning system (Hi Robot), a novel frame-
work that uses VLMs for both high-level reasoning and low-
level task execution. We show that our framework enables a
robot to process much more complex prompts than prior end-
to-end instruction following systems and incorporate feedback
during task execution (Figure 1). While some of the individual
components of this system, such as the low-level VLA policy,
have been studied in prior work, the combination of these
components along with our synthetic data generation scheme
are novel and enable novel capabilities. We evaluate Hi Robot
on diverse robots, including single-arm, dual-arm, and mobile
platforms. Our evaluation requires the robots to perform a
variety of tasks, including new combinations of skills seen
during training, in the context of scenarios that span cleaning
of messy tables, making sandwiches, and grocery shopping.
Our experiments show that Hi Robot surpasses multiple prior
approaches, including using API-based VLMs and flat VLA
policies, in both alignment with human intent and task success.
By grounding high-level reasoning in both verbal and physical
interaction, Hi Robot paves the way for more intuitive and
steerable human-robot symbiosis, advancing the potential for
flexible intelligence in real-world applications.

II. RELATED WORK

Our work relates to research on VLMs for robotic control,
which we can categorize into two groups: directly training

VLMs for robotic control and using VLMs out-of-the-box with
pre-defined robot skills. In the former category, methods fine-
tune VLMs to output robotic controls based on input images
and language commands [5, 42, 16, 3, 22, 17, 28, 44, 46, 30] .
While such methods have demonstrated impressive generaliza-
tion and instruction-following, they are trained for relatively
simple commands (“put the cup on the plate”). In contrast, we
demonstrate tasks with intricate prompts and human interac-
tions that require situated reasoning.

In the latter category, a number of methods use LLMs
and VLMs to reason over robot observations and commands,
and break up multi-stage tasks into simpler steps that can be
performed by low-level controllers. Earlier methods of this sort
used language models in combination with various learned
or hand-designed skills [12, 6, 18, 33, 35, 41? ], but such
systems have limited ability to incorporate complex context,
such as image observations, into the reasoning process. More
recently, multiple works have use VLMs to output parameters
for pre-defined robotic skills [13, 19, 26, 7, 21, 39, 31, 47].
Such methods can process more complex commands and
situate them in the context of visual observations, but these
approaches have shown limited physical dexterity and lim-
ited ability to incorporate real-time language interaction with
humans (with some exceptions discussed below). In contrast,
our system utilizes VLMs for both high-level reasoning and
low-level control, with a flexible language interface between
the two. These design choices, along with a new synthetic
data generation scheme, allow our system to achieve both
significant physical dexterity and detailed promptability that
prior works lack.

Many works aim to enable robotic language interaction
with users, including model-based systems that parse language
instructions and feedback and ground them via a symbolic
representation of the scene [40, 23, 25, 29], and more recent
learning-based methods that process feedback directly, typi-
cally with a hierarchical architecture [20, 43, 34, 1, 36, 24,
10, 9? ? ]. Our work builds on the latter class of methods,



where user feedback is incorporated via a high-level policy
that provides atomic commands to a learned low-level policy.
Unlike OLAF [20], which uses an LLM to modify robot
trajectories, our approach can incorporate situated corrections
based on the robot’s observations, respond to those corrections
in real time, and follow complex prompts describing dexter-
ous manipulation tasks. While YAY Robot [34] can handle
situated real-time corrections, it is limited to one prompt
and to the corrections seen in the human-written data; our
approach leverages VLMs and a new data generation scheme
to enable diverse prompts and open-ended corrections. Finally,
RACER [9] can also incorporate situated corrections, but
relies on a physics simulator to construct recovery behaviors;
our approach only uses real robot demonstrations without
intentional perturbations or corrections and is applicable to
open-ended prompts.

III. PRELIMINARIES AND PROBLEM STATEMENT

A learned policy controls a robot by processing observation
inputs, which we denote ot, and producing one or more actions
At = [at,at+1, ...,at+H−1], where we use At to denote an
action chunk consisting of the next H actions to execute [45].
Our system takes as input the images from multiple cameras
I1t , ..., I

n
t , the robot’s configuration (i.e., joint and gripper

positions) qt, and a language prompt ℓt. Thus, we have ot =
[I1t , ..., I

n
t , ℓt,qt], and the policy represents the distribution

p(At|ot). Prior works have proposed various methods for
representing and training such policies [45, 8, 27, 30].

Since our focus will be specifically on complex, multi-stage
tasks that require parsing intricate prompts and even dynamic
user feedback, we need our policies to be able to interpret
complex language and ground it via observations of the
environment. A particularly powerful approach for handling
such complex semantics is provided by vision-language-action
(VLA) models [3, 5, 16, 42], which use vision-language
model (VLM) pre-training to initialize the policy p(At|ot).
A VLM is a language model that has also been trained to
process image inputs, and represents a distribution p(ℓ′|I, ℓ)
– the probability of a language suffix ℓ′ (e.g., an answer to a
question) in response to an image-language prefix consisting
of an image I and a prompt ℓ (e.g., a visual question).
The most commonly used VLMs represent p(ℓ′|I, ℓ) via an
autoregressive decoder-only Transformer model, factorizing
the distribution into a product of autoregressive token prob-
abilities p(xt+1|x1, ...,xt, I), where xt denotes the tth token
(not to be confused with a physical time step), and we have
ℓ = [x1, ...,xtp ] and ℓ′ = [xtp+1, ...,xtp+ts ], with tp the
length of the prefix and ts the length of the suffix [2]. We
also use such Transformer-based VLMs, but since we do not
modify their architecture and their autoregressive structure is
therefore not relevant to our discussion, we will use the more
concise p(ℓ′|I, ℓ) notation to represent a standard VLM.

A standard VLA is produced by fine-tuning the VLM
p(ℓ′|I, ℓ) such that the actions At are represented by tokens
in the suffix ℓ′, typically by tokenizing the actions via dis-
cretization. We build on the π0 VLA [3], which additionally

Low-Level Policy

(VLA)

User Prompt / Interjection

Low-Level Language Command

Actions

Robot 
Verbal

Response

High-Level Policy

(VLM)

Joints

Fig. 2: Overview of hierarchical VLA. The policy consists of a high-
level and a low-level policy. The high-level policy processes open-ended
instructions and images from base and wrist-mounted cameras to generate
low-level language commands. The low-level policy uses these commands,
images, and robot states to produce actions and optionally verbal responses.

handles multiple images and continuous state observations qt,
and modifies the VLM to output continuous action chunk
distributions via flow-matching, but the high-level principles
are similar. While such VLA models can follow a wide variety
of language prompts [5], by themselves they are typically
limited to simple and atomic commands, and do not handle
the complex prompts and feedback that we study in this paper.

IV. HI ROBOT

We provide an overview of our method in Figure 2. Our
approach decomposes the policy p(At|ot) into a low-level and
high-level inference process, where the low-level policy con-
sists of a VLA that produces the action chunk At in response
to a simpler, low-level language command, and the high-level
policy consists of a VLM that processes the open-ended task
prompt, and outputs these low-level language commands for
the low-level inference process. The two processes run at
different rates: the low-level process produces action chunks at
a high frequency, while the high-level process is invoked less
often, either after a set time or upon receiving new language
feedback. Thus, the high-level process essentially “talks” to
the low-level process, breaking down complex prompts and
interactions into bite-sized commands that can be converted
into actions.

A. Hierarchical Inference with VLAs

Formally, the high-level policy phi(ℓ̂t|I1t , ..., Int , ℓt) takes in
the image observations and an open-ended prompt ℓt, and
produces an intermediate language command ℓ̂t. The low-
level policy plo(At|I1t , ..., Int , ℓ̂t,qt) takes in the same type
of observation as the standard VLA described in Section III,
except that the language command ℓt is replaced by the output
from the high-level policy ℓ̂t. Thus, following the System
1/System 2 analogy, the job of the high-level policy is to take
in the overall task prompt ℓt and accompanying context, in
the form of images and user interactions, and translate it into
a suitable task for the robot to do at this moment, represented



by ℓ̂t, that the low-level policy is likely to understand. Of
course, for simple and familiar tasks, this is not necessary – if
we simply want the robot to perform a task that the low-level
policy was directly trained for, we could simply set ℓ̂t = ℓt and
proceed as in prior work [4]. The benefit of this hierarchical
inference process is in situations where either the prompt ℓt is
too complex for the low-level policy to parse, too unfamiliar in
the context of the robot data, or involves intricate interactions
with the user.

The high-level policy is represented by a VLM that uses
the images and ℓt as the prefix, and produces ℓ̂t as the suffix.
We describe how this model is trained in Section IV-C.

Since high-level inference is slower but also less sensitive
to quick changes in the environment, we can comfortably
run it at a lower frequency. A variety of strategies could
be used to instantiate this, including intelligent strategies
where the system detects when the command ℓ̂t has been
completed before inferring the next suitable command. In our
implementation, we found a very simple strategy to work well:
we rerun high-level inference and recompute ℓ̂t either when
one second has elapsed, or when a new interaction with the
user takes place. This provides reactive behavior when the user
provides feedback or corrections, while maintaining simplicity.

B. Incorporating User Interaction

The user can intervene at any point during policy execution
and provide additional information and feedback, or even
change the task entirely. In our prototype, these interventions
take the form of text commands or spoken language (which is
then transcribed into text). When the system receives a user
intervention, the high-level inference is triggered immediately
to recompute ℓ̂t. The high-level policy has the option to
include a verbal utterance ut in the command ℓ̂t, which can
be confirmations or clarifications from the robot. When ut is
included, we use a text to speech system to play the utterance
to the user, and remove it from ℓ̂t before passing it into the
low-level policy.

When an interjection (“leave it alone”) has been fulfilled,
the user can signal to the robot that it may switch back to the
previous command and continue the task execution. Notably,
the responses of the high-level policy are contextual, because
it observes not only the prompt ℓt, but also the current image
observations. Therefore, it can correctly ground feedback like
“that’s not trash,” which is not possible with language-only
systems.

C. Data Collection and Training Hi Robot

To train Hi Robot in a scalable manner, we employ both
human-labeled and synthetically generated interaction data, as
illustrated in Figure 3. First, we collect robot demonstration
data Ddemo via teleoperation. This yields trajectories with
coarse language annotations of the overall goal (e.g., make a
sandwich). We then segment these full demonstration episodes
into short skills, ℓ̂t, such as pick up one piece of lettuce,
which generally last between one and three seconds. We also
heuristically extract basic movement primitives (e.g., small
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Fig. 3: Data collection and generation for training the high-level policy.
We first collect teleoperated robot demonstrations and segment them into short
skills (e.g., pick up KitKat). Using this labeled data, we prompt a vision-
language model (VLM) to generate synthetic user instructions (e.g., “Can
you get me something sweet?”) and robot responses. The resulting dataset is
used to train the high-level policy, which maps image observations and user
commands to verbal responses and skill labels.

corrective motions) such as move the right arm to the left from
the raw robot actions. The resulting dataset Dlabeled contains
a set of (ℓ̂t, I1t , ..., I

n
t ) tuples that describe robot skills.

Next, we use a large vision-language model (VLM) pgen

to produce synthetic user prompts and interjections ℓt, and
corresponding robot utterance ut. Given Dlabeled, we prompt
pgen with both the visual context I1t , ..., I

n
t and the skill label

ℓ̂t (e.g., pick up the lettuce). pgen then imagines an appropriate
interaction that might have led to ℓ̂t in a real user interaction:
it generates possible user prompts ℓt (e.g., “Can you add some
lettuce for me?”) along with the robot’s verbal responses and
clarifications ut. We detail the generation of the synethetic
dataset Dsyn in Appendix A.

We train the high-level policy phi(ℓ̂t|I1t , ..., Int , ℓt) on Dsyn∪
Dlabeled using the cross-entropy loss for next-token prediction.
To train the low-level policy plo(At|I1t , ..., Int , ℓ̂t,qt), we use
Dlabeled ∪ Ddemo using a flow-matching objective, follow-
ing Black et al. [3].

D. Model Architecture and Implementation

In our implementation, the low-level and high-level poli-
cies use the same base VLM as a starting point, namely
the PaliGemma-3B VLM [2]. The low-level policy is the
π0 VLA [3], which is trained by finetuning PaliGemma-3B
with an additional flow matching “action expert” to produce
continuous actions, while the high-level policy is fine-tuned on
the image-language tuples described in Section IV-C to predict
commands. While we employ π0 for our experiments, our
framework is inherently modular, allowing for the integration
of alternative language-conditioned policies as needed.



V. EXPERIMENTS

In our experimental evaluation, we study a range of prob-
lems that combine challenging physical interactions with com-
plex user interaction, including multi-stage instructions, live
user feedback in the middle of the task, and prompts that
describe novel task variations. We compare our full method to
prior approaches and to alternative designs that use other high-
level policy training methods. The aims of our experiments
are:
1) Evaluate the ability of our method to follow a variety of

complex textual prompts and live user feedback.
2) Compare our full method to prior approaches that train a

flat instruction-following VLA policy or that use founda-
tion models out-of-the-box for high-level reasoning.

3) Evaluate the importance of synthetic data and hierarchy for
task performance and language following.

A. Tasks and Baseline Methods

We use three complex problem domains in our experiments,
as shown in Figure 4.
Table bussing involves cleaning up a table, placing dishes and
utensils into a bussing bin and trash items into the trash. The
training data consists of full table cleaning episodes. This task
is physically challenging because some items require nuanced
grasping strategies (e.g., grasping a plate by the edge), the
robot must pick up and singulate different objects, and in some
cases might even manipulate some objects using others (e.g.,
picking up a plate with trash on it and tilting the plate to
dump the trash into the trash bin). In our evaluation, the robot
receives prompts that substantively alter the goal of the task,
such as “can you clean up only the trash, but not dishes?”,
“can you clean up only the dishes, but not trash?”, and “bus
all the yellowish things”. This requires the high-level model
to reason about the task and each object (e.g., recognizing that
reusable plastic cups are dishes, while paper cups are trash),
then modify the robot’s “default” behavior of always putting
away all items. This includes understanding what to do and
also what not to do (e.g., avoid touching dishes when asked
to collect only trash). The robot might also receive contextual
feedback during the task, such as “this is not trash”, “leave
the rest”, or “leave it alone,” which require it to understand
the interjection and respond accordingly.
Sandwich making requires the robot to make a sandwich,
using up to six ingredients as well as bread. This task is phys-
ically difficult, because the robot has to manipulate deformable
and delicate ingredients that have to be grasped carefully and
placed precisely. The data contains examples of different types
of sandwiches, with segment labels (e.g., “pick up one slice
of bread”). We use this task to evaluate complex prompts,
such as “hi robot, can you make me a sandwich with cheese,
roast beef, and lettuce?” or “can you make me a vegetarian
sandwich? I’m allergic to pickles”, and live corrections, like
“that’s all, no more”.
Grocery shopping entails picking up a combination of re-
quested items from a grocery shelf, placing them into a basket,
and placing the basket on a nearby table. This task requires

controlling a bimanual mobile manipulator (see Figure 4) and
interpreting nuanced semantics that involve variable numbers
of objects. Examples of prompts include “hey robot, can you
get me some chips? I’m preparing for a movie night”, “can
you get me something sweet?”, “can you grab me something to
drink?”, “hey robot, can you get me some Twix and Skittles?”,
as well as interjections such as “I also want some Kitkat”.
Comparisons and ablations. Our comparisons evaluate our
full method and a number of alternative approaches, which
either employ a different type of high-level strategy, or do not
utilize a hierarchical structure. These include:

Expert human high level: This oracle baseline uses an
expert human in place of the high-level model, who manually
enters language commands for low-level behaviors that they
believe are most likely to succeed at the task. This allows us
to understand how much performance is limited by the low-
level policy, with ideal high-level commands.
GPT-4o high-level model: This method uses the same high-
level/low-level decomposition as Hi Robot, but queries the
GPT-4o API-based model for the high level, while using the
same low-level policy. GPT-4o is a significantly larger VLM
than the one we use, but it is not finetuned with our real and
synthetic datasets. This comparison is similar to an advanced
version of SayCan [6], which uses an out-of-the-box LLM as
a high-level policy, while this baseline uses a VLM. To align
GPT-4o with the robot’s affordances, we carefully engineer the
prompt to include task-relevant instructions that the low-level
policy can follow, determined by ranking the most common
skill labels in the human-annotated dataset, and ask GPT-4o
to choose among them.
Flat VLA: This comparison directly uses the same π0 low-
level policy as in Hi Robot, but without any high level or
synthetic data, representing a state-of-the-art approach for
instruction following [3].
Flat VLA with synthetic data: This ablation uses the π0 low-
level policy by itself, without a high-level model, but includes
the synthetic data in the training data for the low-level policy,
such that it can still process the complex prompts used in our
evaluation. This baseline allows us to evaluate the benefit of
hierarchy independent from the effect of synthetic data.
Hi Robot without synthetic data: This ablation corresponds
to our method without synthetic training data, evaluating
the importance of including diverse synthetically-generated
prompts in training. This ablation can be seen as an advanced
VLM-based version of YAY Robot [34], a prior system that
uses a high-level model to predict language commands for a
low-level model.

B. Metrics and Evaluation Protocol

We report two complementary metrics, measured by a
human evaluator who is blind to the method being run. Each
evaluation consists of 20 trials per task per method.

Instruction Accuracy (IA). This score measures how well
the high-level policy’s predicted instruction aligns with human
intent, requiring multi-modal understanding of the current
environment and prompt. If the prediction from the high-
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Fig. 4: Task domains used in our evaluation. Across three domains, we evaluate complex instructions, intermediate feedback, and user interruptions. For
example, in Table Bussing, when the user says, “that’s not trash,” the robot correctly puts the bowl back down instead of putting it away. All images are from
policy rollouts.

level model is consistent with both the user’s command and
the current observation, the evaluator marks it as a correct
prediction; otherwise, it is labeled as incorrect. The Instruction
Accuracy for a trial is then computed as the proportion of
correct predictions out of the total number of predictions. For
flat baselines, which lack interpretable language predictions,
scoring is based on the evaluator’s interpretation of the intent

of the policy behavior.

Task Progress (TP). Since all tasks we evaluate are com-
plex and long-horizon, we record task progress to provide a
granular view of task completion. Task progress quantifies how
closely the robot matches the intended goal and is computed
by the proportion of objects that are successfully placed in
their correct locations or configurations.
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averages over 40% higher instruction accuracy than GPT-4o, showing stronger alignment with user prompts and real-time observations, and approaches expert
human guidance by leveraging its high-level policy.

USER PROMPT

LOW-LEVEL COMMAND PREDICTIONS

HI ROBOT W/O SYNTHETIC DATA

pick up one slice 
of cheddar cheese

put Oreo into 
the basket

pick up the 
bowl

pick up 
chopstick

GPT-4o HIGH-LEVEL

pick up one piece 
of lettuce

pick up Twix

put the bowl into 
the bin

pick up 
chopstick

HI ROBOT

pick up one slice 
of cheddar cheese

put Oreo into 
the basket

respond: Done! All 
trash has been 

cleared. Let me know 
if I can help with 
anything else!

respond: Sorry!

open gripper

INPUTS

Can you make me a sandwich with cheese, 
roast beef, and lettuce?

I’m preparing for a movie night. Can you 
get me some Oreo, Twix, and chips?

Can you clean up only the trash, but not 
dishes?

no, not that

IMAGE OBSERVATION

Fig. 6: Qualitative Command Comparisons. GPT-4o often (a) misidentifies objects, (b) skips subtasks, or (c) ignores user intent. Hi Robot consistently
produces commands aligned with the robot’s ongoing actions and user requests. Without synthetic data, the high-level policy aligns well with image observations
but ignores user constraints.

C. Core Results

We present results for our system and two key baselines:
a GPT-4o policy and a flat VLA method. Quantitative and
qualitative results are in Figure 5 and Figure 6, and we
summarize our findings below.

(1) Hi Robot excels at open-ended instruction follow-
ing. Across all tasks, Hi Robot exhibits substantially higher
Instruction Accuracy and Task Progress, compared to GPT-4o
and the flat baseline. It properly identifies, picks up, and places
the correct items – even when prompted to handle only certain
objects or omit ingredients (e.g., “I’m allergic to pickles”).
In contrast, GPT-4o frequently loses context once physical
interaction begins, issuing nonsensical commands (e.g., “pick
up bermuda triangle”) or sometimes labeling everything as
“plate” or “spoon,” which disrupts long-horizon planning.

(2) Hi Robot shows strong situated reasoning and
adaptation to feedback. When users modify requests mid-
task (e.g., “leave the rest,” “I also want a KitKat”), Hi Robot
updates low-level commands accordingly. GPT-4o, however,
often fails to maintain a coherent internal state, leading to
commands like picking up new objects when the gripper is still

occupied or prematurely switching tasks. The flat baseline, on
the other hand, does not react to real-time feedback.

(3) Hi Robot is effective across diverse tasks, robots,
and user constraints. On single-arm, dual-arm, and mobile
bimanual platforms, Hi Robot is able to handle distinct objects
(from fragile cheese slices to tall bottles) while respecting
dynamic constraints (e.g., “bus only yellowish items,” “don’t
add tomatoes”). By contrast, the flat baseline and GPT-4o often
revert to default behaviors (e.g., picking up every object in
sight, or including almost all ingredients in a sandwich) when
the prompt changes mid-episode.

(4) Expert human guidance reveals the low-level policy’s
strengths but underscores the need for high-level reason-
ing. With human high-level instructions, the low-level policy
executes nearly flawlessly, showing that failures stem more
from reasoning than actuation. However, solely relying on
human input is not scalable. Hi Robot bridges this gap via
a high-level VLM that aligns with user prompts and real-time
observations, whereas GPT-4o’s lack of physical grounding
and the flat baseline’s lack of high-level reasoning hinder
performance.
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Fig. 7: Ablation on synthetic data. Synthetic data is essential for handling
open-ended instructions, as the model trained without it struggle with user-
driven deviations, failing to integrate clarifications and constraints, whereas
Hi Robot adapts seamlessly by leveraging diverse, compositional language
prompts. (IA = Instruction Accuracy, TP = Task Progress)

Flat VLA w/synthetic data Hi Robot

100

80

60

40

20

0
IA TP IA TP IA TP IA TP

Table 
Bussing

Sandwich

Making

Grocery

Shopping

Average

34%

gap

19%

gap

Fig. 8: Hierarchical policy vs. flat policy. The hierarchical approach outper-
forms the flat variant trained on the same data, as it effectively integrates user
feedback and partial instructions, whereas the flat model struggles with mid-
task clarifications and nuanced task variations. (IA = Instruction Accuracy,
TP = Task Progress)

D. Ablation Studies

We conduct two key ablations to isolate the contributions of
(1) synthetic data for high-level reasoning, and (2) hierarchical
decomposition vs. a single “flat” policy.

(A) Synthetic data is critical for open-ended instruction
following. Comparing Hi Robot (trained on human-labeled +
synthetic data) to a variant trained solely on human-labeled
data shows that synthetic interactions significantly boost lan-
guage flexibility (Figure 7). Without them, the ablated model
ignores clarifications (e.g., “this is not trash”) or includes
forbidden items (e.g., pickles), while Hi Robot smoothly
adapts to such feedback, due to the broader coverage of
compositional language in synthetic data.

(B) Hierarchical structure outperforms a flat policy.
We next compare Hi Robot to a flat policy trained on the
same synthetic data but without a separate reasoning step
(Figure 8). The flat model often reverts to clearing all items

or fails to handle partial instructions (“bus only the yellowish
things”), whereas Hi Robot re-checks the prompt at each
high-level step and responds coherently to mid-task updates.
This suggests separating high-level reasoning from low-level
control is benficial for multi-step coherence and adapting to
dynamic user inputs.

VI. DISCUSSION AND FUTURE WORK

We presented Hi Robot, a system that uses vision-language
models (VLMs) in a hierarchical structure, first reasoning over
complex prompts, user feedback, and language interaction
to deduce the most appropriate next step to fulfill the task,
and then performing that step by directly outputting low-
level action commands. Our system can be thought of as a
VLM-based instantiation of the “System 1” and “System 2”
architecture [15]. The deliberative “System 2” layer takes the
form of a high-level VLM policy, which leverages semantic
and visual knowledge from web-scale pre-training to reason
through complex prompts and user interactions. The physical,
reactive “System 1” layer also takes the form of a VLM,
trained to directly output robot actions in response to simpler
commands that describe atomic behaviors.

The two VLMs have nearly identical architectures, with
the only difference being that the low-level policy uses flow
matching to output the actions. Indeed, the separation of roles
at the model level is not fundamental to this design: a natural
step for future work is to combine both systems into one
model, and draw the “System 1” vs “System 2” distinction
purely at inference time. Future work could also interleave
high-level and low-level processing more intricately – while
our system simply runs high-level inference at a fixed but
lower frequency, an adaptive system might simultaneously pro-
cess inputs and language asynchronously at multiple different
levels of abstraction, providing for a more flexible multi-level
reasoning procedure.

Our system also has a number of limitations that could be
studied in future work. While we show that our high-level
policy can often break down complex commands into low-
level steps that the robot can perform physically, the training
process for this high level model relies in some amount of
prompt engineering to produce synthetic training examples
that induce this behavior. The training process decouples the
high-level and low-level models, and they are not aware of one
another’s capabilities except through the training examples.
Coupling these two layers more directly, e.g. by allowing
the high-level policy to be more aware of how successfully
the low-level policy completes each command, would be an
exciting direction for future work. More generally, by instan-
tiating both high-level and low-level reasoning via VLMs, we
believe that this design opens the door for much more intricate
integration of these components, such that future work might
create robotic vision-language-action models that dynamically
reason about inputs, feedback, and even their own capabilities
to produce suitable situated response in complex open-world
settings.
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APPENDIX

A. Scenario and Response Categorization

To ensure the quality and diversity of the synthetic data,
we incorporate structured scenario classification and response
categorization into the prompt design for pgen, following [37].
Specifically, we classify interactions into different scenario
types, such as negative task (where the user instructs the robot
what not to do), situated correction (where the user adjusts an
earlier command based on the evolving task state), and specific
constraint (where the user specifies particular constraints,
such as dietary preferences). In addition, we categorize the
robot’s responses into types such as simple confirmations,
clarifications, and error handling. These classifications guide
the generation process to ensure a broad range of user-robot
interactions.

B. Prompt Construction for Contextual Grounding

In prompt P , we include a detailed description of the task
(e.g., bussing a table, making a sandwich, grocery shopping)
and instruct the model to ground responses in visual ob-
servations and prior context. A key advantage of leveraging
large pretrained VLMs is their ability to incorporate world
knowledge when generating interactions. For instance, the
model can infer dietary constraints when generating prompts
for sandwich-making, producing user commands such as “Can
you make a sandwich for me? I’m lactose intolerant” and
an appropriate robot response like “Sure, I won’t put cheese
on it.” Similarly, it can reason over ambiguous or implicit
requests, such as inferring that “I want something sweet” in
a grocery shopping scenario should lead to suggestions like
chocolate or candy.

To maintain consistency in multi-step tasks, we condition
pgen on prior skill labels within an episode ℓ̂0, ..., ℓ̂t−1, al-
lowing it to generate coherent user commands that account
for past actions. For instance, if the robot has already placed
lettuce and tomato on a sandwich, the generated user prompt
might request additional ingredients that logically follow.
This ensures that the synthetic interactions reflect realistic
task progression rather than isolated commands. As such,
we leverage pgen(ℓt, ut|I1t , ..., Int , ℓ̂0, ..., ℓ̂t−1, ℓ̂t,P) to produce
a richer, more diverse synthetic dataset Dsyn that provides
meaningful supervision for training our high-level policy.

While in this work we generate a separate Dsyn and train a
separate high-level policy for each task (e.g., sandwich making
vs. table cleaning) for clarity and ease of benchmarking,
the architecture is readily amenable to a unified multi-task
formulation. In principle, the same hierarchical approach could
be used to train a single high-level policy across a multitude
of tasks, facilitating knowledge transfer between task domains
and more robust, open-ended robot behavior.

Our system integrates speech-based interactions and real-
time robotic control. Below, we detail the components of our
system, including audio processing, GPU-based inference, and
the robot configurations.

C. Perception and Language Processing
For speech-based interaction, we use a consumer-grade lava-

lier microphone for audio input. Speech-to-text transcription
is handled locally using Whisper large-v2 [32]. For text-to-
speech synthesis, we employ the Cartetia API to generate
natural and expressive speech outputs.

D. Inference Hardware
To support real-time inference, we utilize one to two

NVIDIA GeForce RTX 4090 consumer-grade GPUs.

E. Real-Time Inference Latency
We measured latency across components on consumer-grade

RTX 4090.
Low-Level Policy Per-Step Inference Times

Component Time (ms)
Image encoding 14
Observation processing 32
Action prediction (x10) 27
Total (on-board) 73
Total (off-board + WiFi) 86

High-Level Policy (Single Decoding Step)
• RTX 4090: 47 ms (prefill) + 13.2 ms (decode)
• H100: 17.3 ms (prefill) + 5.7 ms (decode)
These measurements confirm real-time feasibility at ∼10 Hz

control rates. With action chunking [45], we can use it to
control robots at 50 Hz.

F. Robot System Details
We employ three different robot configurations with various

manipulation and mobility capabilities.
a) UR5e.: This setup features a 6-DoF robotic arm

equipped with a parallel jaw gripper. It includes two cameras:
a wrist-mounted camera and an over-the-shoulder camera.
The system operates within a 7-dimensional configuration and
action space.

b) Bimanual ARX.: This configuration consists of two 6-
DoF ARX arms. The system is equipped with three cameras:
two wrist-mounted cameras and one base camera. The com-
bined system has a 14-dimensional configuration and action
space, enabling dextrous bimanual manipulation tasks.

c) Mobile ARX.: Built on the Mobile ALOHA [11]
platform, this system integrates two 6-DoF ARX robotic
arms mounted on a mobile base. The nonholonomic base
introduces two additional action dimensions, resulting in a 14-
dimensional configuration space and a 16-dimensional action
space. Similar to the bimanual setup, it includes two wrist-
mounted cameras and a base camera, providing robust visual
feedback for navigation and manipulation.

G. Model Initialization
While our method can be trained from scratch or fine-tuned

from any vision-language model (VLM) backbone, in practice
we use PaliGemma [2] as the base model. PaliGemma is
an open-source, 3-billion-parameter VLM that offers a good
balance between performance and computational efficiency.
We unfreeze the full model for fine-tuning.



H. Optimizer and Hyperparameters

We use the AdamW optimizer [? ] with β1 = 0.9, β2 =
0.95, and no weight decay. Gradient norms are clipped to a
maximum magnitude of 1. We maintain an exponential moving
average (EMA) of the network weights with a decay factor of
0.999. The learning rate is warmed up over the first 1,000
steps and then held constant at 1× 10−5. We use a batch size
of 512.

I. Training Duration and Resources

Training the high-level policy is highly efficient, requiring
approximately 2 hours on 8×H100 GPUs. The low-level
policy follows a similar training pipeline, though training time
may vary depending on the dataset size and the complexity of
the target tasks for action prediction.

J. Failure Cases

We observed the following failure modes:
1) High-level:

• Difficulty with instructions requiring long-context rea-
soning, since the current system lacks memory

2) Low-level:
• Temporarily ignoring instructions: e.g., grabbing

cheese when the robot is close to it despite user’s lac-
tose intolerance (due to training bias toward proximal
objects)

• Error accumulation and out-of-distribution (OOD) re-
covery: e.g., dropped objects

Beyond the future directions discussed in the main text,
several additional mitigations may help address observed lim-
itations, including but not limited to:

• Stronger instruction-following model
• Long-context model
• Adversarial data generation for edge cases
• Diverse data collection including failure recovery and

annotation

K. System Prompt for GPT-4o

In the system prompt for GPT-4o, we include a description
of the task, robot setup, and common instructions to select
from. Below is an example for the Table Cleaning task.

Listing 1: GPT-4o Baseline Prompt

You are an AI assistant guiding a single-arm
robot to bus tables.

The robot can optionally place trash in the
trash bin and utensils and dishes in the
plastic box.

Every 2 seconds, you can issue one instruction
from a provided list.
You will receive images from two cameras: one
for a global view and one on the robot’ wrist
for detailed views.

Interpret the user’s instruction into one from
the provided list for the robot to execute.

Adhere strictly to the user’s instruction. If
ambiguous, reason out the best action for the
robot. Only provide the exact instruction from
the list without explanation.

You will select your instruction from the
following list:
put food container in trash bin
pick up chopstick
drop wrapper in trash
pick up plastic plate
pick up the cup
pick up white bowl
place bowl to box
pick up spoon
place trash to trash bin
drop box in trash
place take out box to trash
move to the left
pick up container
drop plate in bin
pick up the trash
pick up plastic bowl
go higher
place spoon to box
pick up the paper container
drop fork in bin
pick up the bowl
pick up the plastic container
go lower
pick up box
move to the right
drop plastic lid into recycling bin
pick up wrapper
pick up the plate
put bowl in box
pick up the container
put the plate in the bin
pick up cup
put cup into box
throw it in the trash
pick up food container
pick up blue cup
drop the bowl into the bin
move towards me
pick up napkin
rotate counterclockwise
put the cup in the bin
throw trash away
rotate clockwise
drop plastic bowl into box
open gripper
pick up plastic cup
pick up the plate
close gripper
move away from me
go back to home position
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