
HAND Me the Data: Fast Robot Adaptation
via Hand Path Retrieval

Author Names Omitted for Anonymous Review. Paper-ID [add your ID here]

Abstract—We hand the community HAND, a simple and time-
efficient method for teaching robots new manipulation tasks
through human hand demonstrations. Instead of relying on task-
specific robot demonstrations collected via teleoperation, HAND
uses easy-to-provide hand demonstrations to retrieve relevant
behaviors from task-agnostic robot play data. Using a visual
tracking pipeline, HAND extracts the motion of the human hand
from the hand demonstration and retrieves robot sub-trajectories
in two stages: first filtering by visual similarity, then retrieving
trajectories with similar behaviors to the hand. Fine-tuning a
policy on the retrieved data enables real-time learning of tasks
in under four minutes, without requiring calibrated cameras
or detailed hand pose estimation. Experiments also show that
HAND outperforms retrieval baselines by over 2× in average
task success rates on real robots. Videos can be found at our
project website: https://handretrieval.github.io/.

I. INTRODUCTION

Robots deployed in homes, warehouses, and other dynamic,
human-centric settings will need to quickly learn many tasks
specified by end-users. To support this goal, robot learning
algorithms for these settings must (1) scale easily across
many tasks and (2) enable fast adaptation for each new task.
While imitation learning has shown promise in producing
capable multi-task robot policies [33, 14, 2, 18, 32], it remains
difficult to scale due to its reliance on large amounts of
expert-collected, task-specific teleoperation data. In contrast,
task-agnostic play data—collected through free-form robot
teleoperation [22, 38, 23]—is much easier to gather, as it
does not require constant environment resets or task-specific
labeling. The key challenge is making this data usable for
teaching robots new tasks quickly. In this work, we tackle this
problem by retrieving relevant robot behaviors from the play
dataset using only a single human hand demonstration.

We propose HAND, a simple and time-efficient approach
that adapts pre-trained play policies to specific tasks using
just one human hand demonstration (see Figure 1). Prior work
on robot behavior retrieval relies on additional teleoperated
target-task robot demonstrations [26, 5, 20, 24, 31], which
are difficult for non-expert users to provide. Instead, our
key insight is to extract coarse guidance from the hand
demonstration—specifically, 2D relative hand motion paths—
to retrieve diverse yet relevant behaviors from the play dataset.

Calling back to the motivation, we aim for HAND to be
scalable and fast. Towards scalability, HAND avoids the need
for calibrated depth cameras [28, 6], specialized eye-in-hand
setups [13], or detailed hand-pose estimation [13, 16]. Instead,
it first labels a robot play dataset with 2D gripper positions
relative to the RGB camera frame by tracking the gripper using
a visual point-tracking model [9, 10]. When a human hand
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Fig. 1: HAND learns a policy from as little as one (1) human
hand demonstration.

demonstration is provided, HAND tracks the hand trajectory
with the same pipeline. The hand positions are then converted
into 2D relative sub-trajectories, capturing motion indepen-
dent of the starting point [40]. After an initial filtering step
that removes unrelated behaviors using a visual foundation
model [27], HAND retrieves matching sub-trajectories from
the play dataset based on the 2D relative hand path. Finally, for
fast learning, a policy pre-trained on the play dataset is LoRA-
fine-tuned on the retrieved sub-trajectories, encouraging the
policy to specialize in the demonstrated task. Because HAND
retrieves primarily based on hand motion, it is more robust
to irrelevant visual features such as background clutter and
lighting changes compared to purely visual retrieval methods.

Our experiments, both in simulation in CALVIN [23] and
in the real world on a WidowX robot, demonstrate that
HAND enables quick adaptation to 8 diverse downstream
tasks. Notably, HAND outperforms the best baseline by 2×
on the real robot. We also demonstrate that HAND works
with hand demos collected from completely different scenes
from the robot’s. Finally, we perform a real-time learning
experiment, where HAND learns a challenging long-horizon
task in under 4 minutes of experiment time, from providing
the hand demonstration to the trained policy, while being on
average 5× faster to collect data for than robot teleoperation
demos on our WidowX arm.

II. RELATED WORKS
A. Robot Data Retrieval
Prior work has demonstrated retrieval as an effective mech-
anism for extracting relevant on-robot data for training
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robots [26, 5, 20, 24, 31, 12]. For example, SAILOR [26]
and Behavior Retrieval [5] pre-train variational auto-encoders
(VAEs) on prior robot images and actions to learn a latent
embedding. This latent embedding is used to retrieve states
and actions from an offline dataset similar to ones provided
in expert demonstration trajectories. However, retrieving based
on learned full image encodings or even raw pixel values [31]
can be noisy; Flow-Retrieval [20] instead trains a VAE to
encode optical flows indicating movement of objects and the
robot arm in the scene. Similar to Flow-Retrieval, our method
HAND also retrieves based on robot arm movement. However,
rather than training a dataset-specific VAE model that may
not be robust to large visual differences, we retrieve from our
offline robot data by primarily matching motions of a human
hand demonstration using relative 2D paths of the robot end-
effector in the prior data. This hand path retrieval helps us
robustly retrieve relevant robot arm behaviors.

STRAP [24] addresses visual retrieval robustness issues of
prior work by using features from DINO-v2 [27], a large pre-
trained image-input foundation model for retrieval. However,
STRAP, along with all aforementioned retrieval work, assumes
access to expert robot demonstrations for the target tasks.
HAND on the other hand, only requires a single, easier-to-
collect human hand demonstration and results in better re-
trieval and downstream task success rate compared to STRAP.

B. Learning From Human Hands
Similar to HAND, a separate line of work has proposed
methods to use human hands to learn robot policies. One
approach is to train models on human video datasets to predict
future object flows [37, 39] or human affordances [1, 15].
These intermediate affordance and flow representations are
then used to either train a policy conditioned on this rep-
resentation [37] on robot data or control a heuristic pol-
icy [39, 1, 15]. Other works focus on learning directly from
human hands [28, 6, 13, 11, 16]. These works generally
use hand-pose detection models aided by multiple cameras
or calibrated depth cameras to convert hand poses directly
to robot gripper keypoints [28, 6, 16]. However, works that
exclusively retrieve human data are restricted to constrained
policy representations as they must match human hand poses
to robot gripper poses. Kim et al. [13] instead use an eye-in-
hand camera mounted on a human demonstrator’s forearm to
train an imitation learning policy conditioned on robot eye-in-
hand camera observations. Unlike these prior works, HAND
only requires a single RGB camera from which the robot
gripper can be seen. Also, we focus on retrieving robot play
data, allowing us to train arbitrarily expressive policies without
constrained policy representations [28, 6, 16] or intermediate
representations [37, 39, 1, 15].

III. HAND: FAST ROBOT ADAPTATION VIA HAND PATH
RETRIEVAL

We assume access to a dataset of task-agnostic robot play data,
Dplay, consisting of trajectories τi = {(ot, at)}Ti=1, where each
ot is per-timestep observation that includes RGB images of the
robot gripper and robot proprioceptive information, and at is

the robot action. These trajectories may span many scenes or
tasks and can vary in length, potentially covering long-horizon
behavior. We do not assume task labels (e.g., language labels),
as data collection is easier to scale without labeling each sub-
trajectory in a long-horizon play trajectory.1 We assume the
RGB camera’s angle relative to the robot base is fixed across
trajectories, which is the case for tabletop robot manipulation
setups.

In contrast to prior retrieval methods that rely on robot
demonstrations for each target task [26, 5, 20, 24], we assume
access to easy-to-provide human hand demonstrations.2 For
each task, a human records their hand movement without
teleoperating the robot. On our real-world setup, these hand
demonstrations, Dhand, are on average 5× faster to collect than
robot teleoperation data. Moreover, producing high-quality
hand demonstrations typically requires far less effort than
robot teleoperation [35, 17]. Each video in Dhand consists of a
sequence of RGB images o1, . . . , oH , captured from a similar
viewpoint relative to the human hand as the robot play data
relative to the robot gripper.

Given Dplay and Dhand, we aim to train a policy πθ(a | o)
to perform the target task demonstrated by the human in
Dhand. Since we do not assume task labels in Dplay and we
are provided no expert robot teleoperation demonstrations,
we must retrieve sub-trajectories indicating how to perform
the behavior demonstrated in Dhand from Dplay for training
π. We denote this retrieved dataset, which we later use
for imitation learning, as Dretrieved. Moreover, following our
motivation in Section I, we aim for our method to be fast,
so that non-expert end-users can easily train the robot for
many downstream tasks. Thus, the key challenges we resolve
in our method HAND are: (1) designing a representation that
can unify the behaviors in robot sub-trajectories and human
hand demonstrations (Section III-A), (2) retrieving relevant
sub-trajectories based on a suitable distance metric between
these representations (Section III-B), and (3) time-efficiently
training a policy that can perform various unseen target
tasks with a high success rate without expert demonstrations
(Section III-C). See Figure 2 for an overview and Algorithm 1
for full algorithm pseudocode.

A. Path Distance as a Unifying Representation for Retrieval
Existing robot data retrieval methods assume access to expert
demonstrations from which they extract proprioceptive infor-
mation (e.g., joint states and actions) alongside visual features
for retrieval [26, 5, 20, 24, 31]. However, since Dhand contains
only visual data and no robot actions, retrieval based purely
on appearance can be noisy—especially due to the visual
domain gap between hand demonstrations in Dhand and robot
demonstrations in Dplay (c.f., Figure 2, left). To address these
issues, we propose an embodiment-agnostic, behavior-centric
retrieval metric that enables matching between Dhand and Dplay

1HAND can also easily incorporate task labels as an extra policy condi-
tioning input.

2HAND also outperforms baselines even when they have access to robot
demonstrations.
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Fig. 2: HAND enables fast-adaptation to a new target task by using an easy-to-provide hand demonstration of the target task
(Left). We propose a two-step retrieval procedure where we first filter the trajectories in the offline play dataset, Dplay, for
visually similar trajectories based on features from a pretrained vision model. We use off-the-shelf, pretrained hand detection
and point tracking to construct 2D paths of the motion for both the human hand and robot end-effector. We use these paths as
a distance metric to retrieve relevant trajectories from the play dataset (Middle) for quickly fine-tuning a pretrained transformer
policy on the target task (Right).

based on demonstrated behaviors rather than appearance.
Using 2D Paths for Retrieval. The movement of the robot

end-effector over time provides rich information about its
behavior [18]. We represent behaviors in both datasets using
the paths traced by the human hand or the gripper. Because we
assume access only to an RGB camera from which the hand
or the gripper is visible (i.e., no depth), we construct these
paths in 2D relative to the camera viewpoint for both Dplay
and Dhand.3

Obtaining Paths from Data. To extract paths, we use
CoTracker3 [10], an off-the-shelf point tracker capable of
tracking 2D points across video sequences, even under occlu-
sion. CoTracker3 only requires a single point on the gripper
or hand to generate a complete trajectory. We use Molmo-
7B [4], an open-source 7B image-to-point foundation model,
to automatically select this point by prompting it at the
midpoint of each trajectory with either “Point at the center
of the hand” or “Point to the robot gripper.” Using the middle
frame ensures a higher chance of visibility in case the gripper
or hand is not yet in frame at the beginning or occluded at the
end.4

Given the 2D point (x, y)hand or (x, y)play from the middle
frame, we use CoTracker3 to perform bidirectional point
tracking, resulting in a 2D path phand = {(xt, yt)hand}Ht=1 or
pplay = {(xt, yt)play}Tt=1 for each trajectory. See the Gripper/-
Hand Tracking block of Figure 2 for a visualization of this
pipeline. Next, we describe how we use 2D paths to retrieve
sub-trajectories from Dplay.

3If both datasets have additional calibrated depth information, HAND can
also operate on 3D paths.

4Points can also be obtained heuristically, e.g., if the robot starts from the
same position in each Dplay traj.

B. Retrieving Relevant Sub-Trajectories using Path Distance
Background. For identifying relevant sub-trajectories in Dplay,
we follow Memmel et al. [24] and use Subsequence Dynamic
Time Warping (S-DTW) [25], an algorithm for aligning a
shorter sequence to a portion of a longer reference sequence.
Given a query sequence Q = {q1, q2, . . . , qH} and a longer
reference sequence R = {r1, r2, . . . , rT }, where T > H , the
goal of S-DTW is to find a contiguous subsequence of R that
minimizes the total cumulative distance between elements of
both sequences. In HAND, the query sequences are the 2D
hand demo paths {(xt, yt)hand}Ht=1 and the reference sequences
are the 2D paths generated from long-horizon robot play data
{(xt, yt)play}Tt=1.

Sub-Trajectory Preprocessing. To preprocess the datasets
for S-DTW, we first segment the offline play dataset, Dplay,
into variable-length sub-trajectories using a simple heuristic
based on proprioception proposed in several prior works [30,
24]. In particular, we split the trajectories whenever the
acceleration or velocity magnitude (depending on what pro-
prioception data is available) drops below a predefined ϵ
value, corresponding to when the teleoperator switches be-
tween tasks. We find that this simple heuristic can reason-
ably segment trajectories into atomic components resembling
lower-level primitives. We also split the hand demonstrations
evenly into smaller sub-trajectories based on how many sub-
tasks the human operator determined they have completed.
After sub-trajectory splitting, we have two sub-trajectory
datasets, Thand = {ti1:a, tia:b, . . . , tiHi−|pi

hand|:Hi
∀ τ ihand ∈ Dhand}

and Tplay = {tj1:a, t
j
a:b, . . . , t

j

Tj−|pj
play|:T

∀ τ jplay ∈ Dplay} where

|pihand| and |pjplay| are the lengths of the last sub-trajectory
paths of trajectories i, j from Dhand and Dplay, respectively.
Inspired by prior work that proposes to cluster trajectories



based on relative embedding differences [40], each sub-
trajectory is represented in relative 2D coordinates, i.e.,
pt = [xt+1 − xt, yt+1 − yt]. Relative coordinates ensure in-
variance based on the starting positions of the hand or gripper
so that these starting positions do not influence how trajecto-
ries are retrieved.

Visual Filtering. One issue with retrieving sub-trajectories
based only on path distance is that different tasks can have
similar movement patterns. For example, tasks like “pick up
the mug” and “pick up the cube” can appear nearly identical
in 2D path space. But, the retrieved trajectories for one task
may not benefit learning of the other; since we don’t assume
task labels in Dplay, a policy directly trained on “pick up the
cube” retrieved sub-trajectories may still fail to pick up a
mug. Therefore, before retrieving sub-trajectories with paths,
we first run a visual filtering step to ensure that the sub-
trajectories we retrieve will be task-relevant. We use an object-
centric visual foundation model, namely DINOv2 [27], to
first filter out sub-trajectories performing unrelated tasks with
different objects. Specifically, we use the DINOv2 first and
final frame embedding differences, representing visual object
movement from the first to last frame, between human hand
demos and robot play data to filter Tplay. We find that using
this simple method is sufficient to filter out most irrelevant
sub-trajectories. For a given image sequence ohand

1:H from a hand
sub-trajectory and image sequence oplay

1:T from a robot play sub-
trajectory, we define the cost as:

Cvisual(o
hand
1:H , oplay

1:T ) = ||DINO(ohand
1 )− DINO(oplay

1 )||22︸ ︷︷ ︸
first frame DINO embedding difference

+ ||DINO(ohand
H )− DINO(oplay

T )||22︸ ︷︷ ︸
last frame DINO embedding difference

.

(1)

We sort these costs and take the M trajectories with lowest
cost as possible retrieval trajectories for each human hand
demo sub-trajectory in Thand. The rest are discarded for those
hand demos.

Retrieving Sub-Trajectories. Finally, we then employ S-
DTW to match the target sub-trajectories, Thand, to the set of
visually filtered segments ∈ Tplay. Given two sub-trajectories,
ti ∈ Tplay and tj ∈ Thand, S-DTW returns the cost along
with the start and end indices of the subsequence in tj that
minimizes the path cost (see Figure 2). We select the K
matches from Dplay with the lowest cost to construct our
retrieval dataset, Dretrieved.

C. Putting it All Together: Fast-Adaptation with Parameter-
Efficient Policy Fine-tuning

We aim to enable fast, data-efficient learning of the task
demonstrated in Dhand. To this end, we first pretrain a task-
agnostic base policy πbase on Dplay with standard behavior
cloning (BC) loss. While our approach is compatible with
any policy architecture, we use action-chunked transformer
policies [41] due to their suitability for low-parameter fine-
tuning and strong performance in long-horizon imitation learn-
ing [42, 43, 7, 2].

Adapting to Dretrieved. To rapidly adapt to a new task
with minimal data, we leverage parameter-efficient fine-tuning
using task-specific adapters—small trainable modules that
modulate the behavior of the frozen base policy. Adapter-
based methods have shown promise in few-shot imitation
learning [19, 21], making them ideal for our limited retrieved
dataset Dretrieved. Following the findings of Liu et al. [21], we
specifically insert LoRA layers [8] into the transformer blocks
of πbase. These are low-rank trainable matrices (typically
0.1%–2% of the base policy’s parameters) inserted between
the attention and feedforward layers (see Figure 2, LoRA
Layers). During fine-tuning, we keep πbase frozen and update
only the parameters of these LoRA layers, θ, using Dretrieved.

Loss Re-Weighting. While our retrieval mechanism iden-
tifies sub-trajectories relevant to the target task, not all will
be equally useful. To prioritize the most behaviorally aligned
examples, we reweight the BC loss with an exponential term
∈ (0,∞) following Advantage-Weighted Regression [29],
where each sub-trajectory is weighted based on its similarity
(from S-DTW) to the hand demonstration. Intuitively, this
upweights the loss of the most relevant examples in Dretrieved
and conversely downweights those that are less relevant.
Finally, because trajectory cost scales vary depending on the
task being retrieved and the features being used for S-DTW,
we rescale the S-DTW costs Ci,path to a fixed range. For
each τi ∈ Dretrieved, its weight e−Ci,path is scaled to between
[0.01, 100], where the normalization term comes from the sum
of costs of all trajectories in Dretrieved. Our final training loss
is:

LBC;θ =
1

|Dretrieved|
∑

τi∈Dretrieved

exp(−Ci,path)︸ ︷︷ ︸
Normalized Weight

× (− log πθ(a | o))︸ ︷︷ ︸
BC Loss

.

(2)

IV. EXPERIMENTS

Our aim in the experiments is to study the efficacy of HAND
as a robot data retrieval pipeline and evaluate its ability to
quickly learn to solve new downstream tasks. To this end, we
organize our experiments to answer the following questions,
in order:

(Q1) How effective is HAND, using 2D relative paths, in
retrieving task-relevant behaviors?

(Q2) Does HAND work with hand demonstrations from unseen
scenes?

(Q3) Does HAND enable learning tasks in new scenes in
simulation?

(Q4) Can HAND enable real-time, fast adaptation on a real
robot?

A. Experimental Setup
We evaluate HAND both in simulation using the CALVIN
benchmark [23] and on real-world manipulation tasks with
the WidowX-250 robot arm.

CALVIN contains unstructured, teleoperated play data in
four tabletop manipulation environments {A,B,C,D}, that share
the same set of objects, but have different visual textures and
static object locations (e.g., slider, button, switch), shown in



Fig. 3: CALVIN Results. Task success rate of HAND and
baseline methods on the CALVIN ABC-D task across three
random seeds. Ablations of HAND are denoted by hatches.
HAND and ablations outperform the next best baseline Flow
on task success rate across all tasks.

Figure 6 (Left). Because it is infeasible to provide explicit
human hand demonstrations in CALVIN, we instead perform
end-effector point-tracking on expert task demonstrations to
mimic the effect of hand-based tracking. We uniformly sample
N = 6 task-specific expert trajectories from environment D as
Dhand, and utilize about 17k trajectories from environments
{A,B,C} as Dplay. We evaluate our fine-tuned policy in envi-
ronment D across 3 tasks.

Real World. We demonstrate that HAND can also scale
to real-world scenarios by evaluating on several manipu-
lation tasks in a kitchen setup shown in Figure 7. We
collect a task-agnostic play dataset of about 50k transi-
tions. Human teleoperators were instructed to freely inter-
act with the available objects in the scene without be-
ing bound to specific task goals. Object positions are ran-
domized within the workspace during data collection and
evaluation. We test three tasks: Reach Green Block,
Press Button, and Close Microwave. We also intro-
duce two additional difficult, long-horizon tasks, Put K-Cup
in Coffee Machine and Blend Carrot, which re-
quire great precision and more than 150 real-world timesteps
at a 5hz control frequency to execute, highlighting the capabil-
ities of HAND to learn complex behaviors in real-time. Partial
success is provided for tasks composed of multiple subtasks.
Refer to Appendix A for description of each task.

Baselines: We compare HAND to several retrieval baselines.
All methods use the same transformer policy where applicable.
We refer the reader to Appendix A for implementation details
and Table IV for extensive ablation results. We consider the
following baseline methods:
• πbase is the base policy pre-trained only on task-agnostic

play data;
• CLIP retrieves based on cosine similarity between target

task language description’s CLIP embeddings (instead of
hand demos) and play data’s CLIP frame embeddings;

• Flow [20] trains a dataset-specific VAE on pre-computed
optical flows for Dplay from GMFlow [36] and retrieves indi-
vidual states-action pairs based on latent motion similarity;
and

• STRAP [24] also uses S-DTW for sub-trajectory retrieval
but computes S-DTW distance based solely on Euclidean
distance between pre-trained DINO-v2 image embeddings.

STRAP and Flow assume access to expert robot demon-
strations for both retrieval and fine-tuning. Unless otherwise

Hand Demo STRAPFlow HAND (-VF) HAND

Fig. 4: Qualitative retrieval results on out-of-distribution
scene. We visualize the top sub-trajectory match of Flow ,
STRAP , HAND without visual filtering (HAND(-VF)), and
HAND on two out-of-domain demonstrations recorded from an
iPhone camera, showing approaching a K-Cup and putting it
into the machine. Only HAND’s top match is relevant for both
hand demonstrations.

Block Button Microwave

Flow 7/25 0/25 0/25
STRAP 5/25 0/25 2/25
HAND(-VF) 9/25 13/25 9/25
HAND 15/25 18/25 11/25

TABLE I: Number of retrieved sub-trajectories performing
demonstrated task. HAND retrieves more sub-trajectories
performing the task compared to Flow and STRAP.

stated, we adopt them for our setting without expert robot
demonstration fine-tuning because we do not assume access
to them. STRAP and Flow propose training policies from
scratch, but we LoRA fine-tune both of them, like with HAND,
because we found it to perform better.

B. Experimental Evaluation
(Q1): HAND retrieves more task-relevant data. We ana-
lyze the quality of retrieved sub-trajectories between Flow,
STRAP and HAND. STRAP and HAND both use S-DTW-
based trajectory retrieval, but STRAP relies purely on visual
DINO-v2 embeddings for retrieval. We provide a single hand
demonstration of three real robot tasks and retrieve the top
K = 25 matches from Dplay. Compared to STRAP and Flow,
we observe in Table I that HAND retrieves more trajectories
in which the robot performs the demonstrated task. As both
STRAP and Flow retrieve solely based on visual similarity,
they perform poorly when there is a visual gap between
the target demonstrations, e.g., human hand videos, and the
offline robot play dataset. In particular, for the Push Button
task, STRAP cannot retrieve any button pushing trajectories
in its top 25 matches. Moreover, we ablate HAND’s visual
filtering step and show that it helps retrieve +30% more
relevant trajectories across all tasks. We provide qualitative
comparisons of retrieved trajectories by in Appendix C.

(Q2): HAND works with hand demos from unseen
environments. Because HAND retrieves based on relative
hand motions, it can work with target hand demos from
out-of-distribution scenes, provided the camera angle remains
relatively close to that in the play dataset. To demonstrate this
scene robustness, we collect hand demos from a different scene
with a handheld iPhone camera and a real coffee machine.
We retrieve from robot play data containing a completely
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Fig. 5: Real-Robot Results. Number of successes out of 10
of πbase, STRAP, Flow, and HAND.

different scene and a toy coffee machine. In Figure 4, we
show the lowest cost retrieved sub-trajectory of STRAP and
Flow compared to HAND and a HAND ablation without
the visual filtering step, HAND(-VF). Both of the retrieved
trajectories for STRAP and Flow, along with the top trajectory
for HAND(-VF) are irrelevant to the demonstrated task. Only
HAND retrieves relevant robot trajectories for both hand demos
because it focuses on the motion demonstrated by the human
hand after visual filtering.

(Q3): HAND enables policy learning in simulation and
real world. In Figure 3, we demonstrate that HAND and abla-
tions outperform baselines in CALVIN, with a 16% average
improvement over Flow and 123% over STRAP. In Figure 3,
we also ablate the use of S-DTW-based loss weighting from
Equation (2) with HAND(-CW), visual filtering from Equa-
tion (1) with HAND(-VF), and ground truth 3D pose informa-
tion with HAND(+3D,-VF,-CW). HAND outperforms all of
these ablations in Move Slider Left. Surprisingly, in this task,
HAND(+3D,-VF,-CW) with priviledged 3D information,
even underperforms HAND(-CW). We believe this is because,
as HAND(+3D,-VF,-CW) retrieves trajectories based on an
exact match in 3D end-effector pose, the retrieved trajectories
have little variability and thus fail to generalize to changes
in object placement in the scene. In some tasks, we notice
that adding visual filtering can negatively impact performance,
likely for a similar reason that filtering constrains the diversity
of the resulting data subset. However, we demonstrated in the
above two paragraphs that visual filtering helps in the real
world to retrieve task-relevant trajectories.

Real-world experiments in Figure 5 demonstrate that fine-
tuning with HAND improves success rates by +45% over
the next best baseline, STRAP. In contrast, Flow fails to
learn a policy that achieves reasonable success rates in any
of the tasks, despite it being the best-performing baseline
in CALVIN. Despite visual filtering not always helping in
simulation in CALVIN, we observe that visual filtering is
necessary in the real world to retrieve trajectories where
the target object is interacted with, as demonstrated with
HAND(-VF)’s worse retrieval performance in Table I. We
ablate different K values for real robot tasks in Appendix E.
We also report the performance of πbase, trained on all of Dplay.

(Q4): HAND enables real-time, data-efficient policy
learning of long-horizon tasks. We performed two small-

Method User 1 (Minutes) User 2 (Minutes)

Hand Demos (Min) ↓ 3 2
Robot Demos (Min) ↓ 10 14

Hand Demos (SR) ↑ 5/10 4/10
Robot Demos (SR) ↑ 3/10 2.5/10

TABLE II: Hand vs. Robot Teleoperation. Comparison of
time taken and success rates between hand and teleoperated
demonstrations.

scale user studies with IRB approval from our institution to
demonstrate real-time learning. In the first study, a participant
familiar with HAND iteratively demonstrated each part of a
long-horizon Blend Carrot task (shown in Figure 7) and
trained a HAND policy with over 70% success rate in under
four (4) minutes from providing a single hand demonstration
to deploying the fine-tuned policy. A full, uncut video of this
experiment can be found on our project website.

In the second study, two external users with prior robot
teleoperation experience—but not affiliated with this research
project—each attempted to collect 10 demonstrations, using
both hand and teleoperation methods, to train the robot for
the Put Keurig Cup in Coffee Machine task (see
Figure 7). We employ HAND retrieval for hand-collected
demonstrations and STRAP retrieval for robot teleoperation
demonstrations. For a direct comparison, we additionally fine-
tune STRAP with the human-collected teleoperated demon-
strations as their paper suggests.

As reported in Table II, teleoperated demonstrations re-
quired over 3× more time to collect than hand demonstrations.
Notably, using a single hand demonstration per user, we fine-
tuned a policy exceeding 40% task completion compared
to STRAP which only achieves 25% using a single robot
teleoperation demonstration. Further increasing the number of
expert demonstrations for STRAP to five hurt the downstream
performance; we observed qualitatively that adding more ex-
pert teleoperated demonstrations to STRAP reduced the quality
of retrievals and thus negatively impacted the downstream pol-
icy performance. Our results show that hand demonstrations
are not only significantly more time-efficient to collect, but
also more effective: a single hand demonstration using HAND
retrieves more relevant trajectories than STRAP using multiple
expert demonstrations, indicating superior performance on new
downstream tasks.

V. CONCLUSION
We presented HAND a simple and time-efficient framework
for adapting robots to new tasks using easy-to-provide human
hand demonstrations. We demonstrated that HAND enables
real-time, unseen task adaptation with a single hand demon-
stration in just several minutes of policy fine-tuning. Our
results highlight the scalability of HAND to train performant
real-world, task-specific policies.
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APPENDIX

A. Environment Details and Hyperparameters
CALVIN. The CALVIN benchmark is built on top of the
PyBullet [3] simulator and involves a 7-DOF Franka Emika
Panda Robot arm that manipulates the scene. CALVIN consists
of 34 tasks and 4 different environments (ABCD). All envi-
ronments are equipped with a desk, a sliding door, a drawer,
a button that turns on/off an LED, a switch that controls a
lightbulb and three different colored blocks (red, blue and
pink). These environments differ from each other in the texture
of the desk and positions of the objects. CALVIN provides 24
hours of tele-operated unstructured play data, 35% of which
are annotated with language descriptions. We utilize this 35%
as a natural way to obtain a smaller subset of the data as the
full dataset is very large, but we do not use the task-oriented
language instructions. In total, Dplay corresponds to ∼ 17k
trajectories for our experiments.

Train: Env A Train: Env B

Test: Env DTrain: Env C

(a) CALVIN [23] (b) Real-World WidowX-250

Fig. 6: Environments. We retrieve data from a prior dataset to
train on new scenes in CALVIN. On our real-world WidowX-
250 robot, we demonstrate real-world learning from HAND-
retrieved trajectories along with real-time adaptation to long-
horizon tasks.

We evaluate on the following tasks:
• Close Drawer. For this task, the arm is required to push an

opened drawer and close it. The drawer’s degree of openness
is randomized.

• Move Slider Left. This task requires the robot arm to move
a slider located on the desk from the right to the left. The
slider position is randomized.

• Turn On Led. In this task, the robot arm needs to navigate
its way to a button and press down on it such that an LED
turns on.

• Lift Blue Block Table. For this task, the robot arm needs
to pick up a blue block from the table. The location of the
blue block on the table is randomized.

Fig. 7: Real Robot Tasks. We evaluate HAND on 5 different
real robot tasks. The last two are long-horizon tasks, requiring
more than 100 timesteps of execution.

Real Robot Hardware Setup. We evaluate HAND on a
real-world multi-task kitchen environment using the WidowX
robot arm. The WidowX is a 7-DoF robot arm with a two-
fingered parallel jaw gripper. Our robot environment setup is
shown in Figure 6. We use an Intel Realsense D435 RGBD
camera as a static external camera and a Logitech webcam as
an over-the-shoulder camera view. We use a Meta Quest 2 VR
headset for teleoperating the robot.

Task-agnostic play dataset. Our play dataset contains a
total of 50k transitions, each trajectory having an average of
230 timesteps and covering multiple tasks, collected at 5hz. To
encourage diverse behaviors and motions, human teleoperators
were instructed to freely interact with the available objects in
the scene without being bound to specific task goals.

Evaluation protocol. We introduce distractor objects in
the scene that are not part of the task so that the policy
does not just memorize the expert demonstrations. Moreover,
movable task object positions are randomized in a fixed region
if applicable. We evaluate on four manipulation tasks described
below:
• Reach Block. In this task, the robot arm must reach and

hover directly above a green block placed on the table.
Success is achieved when the gripper remains positioned
clearly above the block. Partial success is awarded if the
gripper end-effector touches the block without hovering
steadily above it.

• Push Button. This task requires the robot arm to press
the right-side button on a stovetop. Success is achieved
upon pressing the button. Partial success is awarded if the
robot arm approaches sufficiently close to the button without
making contact.

• Close Microwave. This task requires the robot to close
a microwave door from various starting angles. Partial
successe is awarded if the robot pushes the door without
completely closing it. A successful closure is confirmed by
an audible click sound.

• Put K-Cup in Coffee Machine.5 In this task, the robot
needs to first pick up the Keurig cup and then transport
it to the coffee machine and insert the cup into the cup
holder. This task requires precision low-level control as the
Keurig cup is small, making it difficult to grasp reliably.
Additionally, the cup holder on the coffee machine is just
large enough to fit the Keurig cup, leaving small margin of
error during the insertion. The coffee machine is fixed to the
kitchen stovetop, while the initial location of the Keurig cup
is randomized. Given the difficulty of the task, we provide
partial success for successfully grasping the Keurig cup.

• Blend Carrot. The robot first picks up a toy carrot and
then drops it into the blender. Once the carrot is inside
the blender, it will press a button at the blender base to
activate the blender and hold the button for 2 seconds. The
location of the blender is static, but the carrot is randomized.
Partial success is provided for picking up the carrot and also

5https://www.samsclub.com/p/members-mark-gourmet-kitchen-appliances-playset/
P990340349?xid=plp product 2

https://www.samsclub.com/p/members-mark-gourmet-kitchen-appliances-playset/P990340349?xid=plp_product_2
https://www.samsclub.com/p/members-mark-gourmet-kitchen-appliances-playset/P990340349?xid=plp_product_2
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Fig. 8: Real Robot Policy Architecture. (Left) Learnable image embeddings following [34]. (Right) The learned image
embeddings for each modality are concatenated and provided to a transformer decoder similar to [41]. We also perform action
chunking with a chunk size of 5 timesteps for 1 second of execution.

successfully dropping it into the blender. Due to the long-
horizon nature of the task, we allocate a budget of 300
timesteps to account for its extended duration.

Robot Policy. For our policy, we are inspired by the
architectural components introduced in Wang et al. [34] and
Zhao et al. [41]. A diagram of our policy architecture is shown
in Figure 8. For both external and over-the-shoulder RGB
images, we use a pretrained ResNet to first extract 7×7 feature
maps and flatten these features across the spatial dimension to
create a sequence of dv dimension tokens where dv is the
output dimension of ResNet. In particular, we use ResNet18
where dv = 512. We feed these visual tokens as learnable
input tokens to a causal transformer decoder with dimension
d. We use the flattened image feature map as the keys and
values and apply a cross-attention between the image features
and learnable tokens. We concatenate all modality tokens and
add additional modality-specific embeddings and sinusoidal
positional embeddings.

The policy base is a transformer decoder similar to the one
used in ACT [41]. The input sequence to the transformer is a
fixed position embedding, with dimensions k × 512 where k
is the chunk size and the keys and values are the combined
image tokens from the stem. Given the current observation,
we predict a chunk of k = 5 actions, which corresponds
to 1 second of execution. During inference time, we also
apply temporal ensembling similar to [41] with exponential
averaging parameter m = 0.5, which controls the weight of
previous actions.

We train the policy for 20k update steps with batch size of
256 and a learning rate of 3e−4 (around 2 hours of wall time).
The action dimension is 7 comprising of continuous Cartesian
end-effector motion (6), corresponding to relative changes in
pose and the gripper state (1).

Hyperparameter Small Large

Number of attention heads 4 8
Number of transformer layers 3 6
Embedding dimension 256 512

TABLE III: Transformer Hyperparameters. Small and large
transformer architectures depending on task complexity.

B. User Studies
1) Efficiency of Hand Demonstrations

Teleoperation Hand Demo

Fig. 9: Efficient Demonstrations. Two users, unfamiliar with
HAND are asked to collect trajectories either via teleoperation
(Left) or using their hands (Right). HAND retrieval achieves
a 50% success rate with the same amount of demonstrations
using 3× less time. STRAP retrieval is unable to reach 50%
even when provided with more expert demonstrations.

In our first study, two users collect 10 demonstrations each
either by manually teleoperating using a VR controller or by
providing a hand demonstration. For manual teleoperation, we
explain to the users how to operate the robot using the VR
controller and allow them a couple trials to get accustomed
to the interface. For hand demonstrations, we ask the users
to mimic the trajectory of the robot end effector using their
hands. Figure 9 shows an example of a user performing both
forms of demonstrations. We observe that providing hand
demonstrations is significantly more time efficient (over 3×)
compared to manual teleoperation. Furthermore, with just a
single hand demonstration, we are able to learn a performant
policy with 50% success rate, while STRAP struggles even
when provided 5 expert demonstrations.



2) Fast Adaptation to Long-Horizon Tasks

Collect One Hand Demo 

(~15 seconds)

Retrieval + Fine-Tune

(~2 minutes)

Evaluate

(~ 15 seconds)

Fig. 10: Fast Adaptation. We conduct a small-scale user
study to demonstrate HAND’s ability to learn robot policies
in real-time. From providing the hand demonstration (Left), to
retrieval and fine-tuning a base policy (Middle), to evaluating
the policy (Right), we show that HAND can learn to solve the
Blend Carrot task with with 7.5/10 task completion in less
than 3 minutes

We conduct a small study demonstrating that HAND en-
ables real-time fast, adaptation to unseen downstream tasks.
Snapshots at various stages of this experiment is shown in
Figure 10. In our study, we measure the total time required
for a user to provide a hand demonstration of a new target task
to evaluating the performance of a fine-tuned policy. The hand
demonstration is simple to provide and typically takes between
10−15 seconds to collect. Data preprocessing, which involves
computing the 2D path features of the hand demonstration and
performing retrieval, takes around 30−40 seconds. We assume
that the offline play dataset is already preprocessed prior to
the study and we do not include this time in our estimate.
We also assume a base policy has already been trained on
this data; however, it performs poorly on the target task. We
fine-tune the base policy with 4 LoRA adapter layers for 1000
batch updates, which takes ∼ 2 minutes on a NVIDIA 4070
GPU. The resulting policy, which took less than 3 minutes
to train and achieves 7.5/10 task completion, highlighting the
efficacy of HAND for real-time policy learning. An uncut
video of this study can be found on our project website at
https://handretrieval.github.io/.

Time
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Close 
Microwave

Put K-Cup 
in Coffee 
Machine

Blend 
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Fig. 11: Task Rollouts

C. Qualitative Retrieval Analysis
In Figure 12, we provide more qualitative results comparing
STRAP retrieval results to HAND on each of our real robot
tasks. Across all tasks, HAND retrieves more relevant trajec-
tories that perform the task demonstrated by the human hand.

https://handretrieval.github.io/
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Fig. 12: Qualitative Retrieval Examples. We show the top 5 matches from Dplay for STRAP (top) and HAND (bottom) provided
the hand demonstration for each of our evaluation tasks.



Algorithm 1 HAND FULL ALGORITHM

Require: Hand demonstrations Dhand, offline play dataset Dplay, CoTracker3, Molmo-7B, # retrieved sub-trajectories K,
threshold ϵ, DINO, # visual filtered sub-trajectories M
/* Policy Pretraining */

1: Train πbase on Dplay using regular behavior cloning loss LBC

/* Sub-Trajectory Pre-processing */
2: Thand ← SubTrajSegmentation(Dhand, ϵ) ▷ Heuristic demo segmentation
3: Tplay ← SubTrajSegmentation(Dplay, ϵ) ▷ Heuristic demo segmentation

/* Retrieval using S-DTW and 2D Hand Paths Section III-B */
4: Dretrieved ← {}
5: for τhand ∈ Tplay do
6: ohand

1:H ← image obs sequence of τhand
7: for τplay ∈ Tplay do
8: oplay

1:T ← image obs sequence of τplay
9: /* Visual Filtering */

10: Compute Cvisual(o
hand
1:H , oplay

1:T ) with DINO ▷ Equation (1)
11: end for
12: T M

play ←M sub-trajectories with lowest Cvisual

13: for τplay ∈ T M
play do

14: oplay
1:T ← image obs sequence of τplay

15: (x, y)hand = Molmo(oH/2), (x, y)play = Molmo(oT/2) ▷ Get middle frame query point
16: phand = {(xt, yt)hand}H1 = CoTracker3((x, y)hand) ▷ Track hand point
17: pplay = {(xt, yt)play}T1 = CoTracker3((x, y)play) ▷ Track robot gripper point
18: phand = phand[: −1]− phand[1 :] ▷ Convert phand and pplay to relative 2D paths
19: pplay = pplay[: −1]− pplay[1 :]

20: (Cpath, τ
play
i:j )← S-DTW(phand, pplay) ▷ Path cost and corresponding retrieved sequence

21: end for
22: Add K lowest Cpath τ play

i:j sub-trajectories to Dretrieved
23: end for

/* Parameter-Efficient Policy Fine-tuning */
24: Insert task-specific adapter LoRA layers θ in πbase
25: Update πbase on Dretrieved with loss LBC;θ ▷ Equation (2)
26: return πθ



D. CALVIN Results



Method K=25 K=50 K=100 K=250

With Expert
FT 0.425 ± 0.059 - - -
Flow 0.694 ± 0.089 0.797 ± 0.045 0.633 ± 0.127 0.747 ± 0.039
STRAP 0.481 ± 0.119 0.286 ± 0.073 0.703 ± 0.075 0.600 ± 0.085

Without Expert
πbase 0.233 ± 0.024 - - -
CLIP 0.003 ± 0.004 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Flow 0.808 ± 0.080 0.831 ± 0.058 0.533 ± 0.106 0.653 ± 0.055
STRAP 0.000 ± 0.000 0.011 ± 0.010 0.006 ± 0.008 0.031 ± 0.004
HAND(+3D,-VF,-CW) 0.994 ± 0.004 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
HAND(-VF,-CW) 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
HAND(-VF) 1.000 ± 0.000 1.000 ± 0.000 0.997 ± 0.004 1.000 ± 0.000
HAND 0.828 ± 0.169 0.464 ± 0.061 0.536 ± 0.082 0.436 ± 0.136

TABLE IV: CALVIN Close Drawer: Performance with and without expert demonstrations

Method K=25 K=50 K=100 K=250

With Expert
FT 0.564 ± 0.309 - - -
Flow 0.092 ± 0.038 0.086 ± 0.017 0.156 ± 0.046 0.039 ± 0.039
STRAP 0.053 ± 0.034 0.075 ± 0.012 0.111 ± 0.014 0.094 ± 0.037

Without Expert
πbase 0.011 ± 0.010 - - -
CLIP 0.017 ± 0.024 0.033 ± 0.047 0.006 ± 0.004 0.031 ± 0.024
Flow 0.000 ± 0.000 0.247 ± 0.116 0.094 ± 0.046 0.053 ± 0.014
STRAP 0.058 ± 0.018 0.122 ± 0.022 0.075 ± 0.025 0.028 ± 0.024
HAND(+3D,-VF,-CW) 0.028 ± 0.008 0.047 ± 0.010 0.192 ± 0.049 0.139 ± 0.040
HAND(-VF,-CW) 0.186 ± 0.088 0.081 ± 0.017 0.364 ± 0.149 0.619 ± 0.092
HAND(-VF) 0.069 ± 0.042 0.167 ± 0.056 0.200 ± 0.123 0.325 ± 0.014
HAND 0.647 ± 0.229 0.483 ± 0.041 0.636 ± 0.103 0.431 ± 0.107

TABLE V: CALVIN Move Slider Left: Performance with and without expert demonstrations



Method K=25 K=50 K=100 K=250

With Expert
FT 0.000 ± 0.000 - - -
Flow 0.131 ± 0.085 0.344 ± 0.092 0.697 ± 0.082 0.581 ± 0.134
STRAP 0.200 ± 0.147 0.125 ± 0.042 0.056 ± 0.017 0.372 ± 0.220

Without Expert
πbase 0.036 ± 0.014 - - -
CLIP 0.025 ± 0.035 0.006 ± 0.008 0.019 ± 0.016 0.000 ± 0.000
Flow 0.017 ± 0.024 0.011 ± 0.008 0.364 ± 0.147 0.436 ± 0.031
STRAP 0.500 ± 0.131 0.600 ± 0.184 0.525 ± 0.150 0.633 ± 0.112
HAND(+3D,-VF,-CW) 0.333 ± 0.111 0.661 ± 0.093 0.814 ± 0.059 0.489 ± 0.136
HAND(-VF,-CW) 0.675 ± 0.065 0.719 ± 0.155 0.886 ± 0.032 0.431 ± 0.103
HAND(-VF) 0.428 ± 0.016 0.467 ± 0.138 0.828 ± 0.058 0.881 ± 0.034
HAND 0.136 ± 0.102 0.278 ± 0.073 0.186 ± 0.051 0.094 ± 0.017

TABLE VI: CALVIN Turn On LED: Performance with and without expert demonstrations



E. Real Robot Results



Task
Method

πbase Flow STRAP HAND(-VF) HAND

K=25 K=10 K=25 K=50 K=25 K=10 K=25 K=50

Reach Green Block 0/1.0 0/1.5 0/2.5 1/2.0 1/2.5 2/2.5 3/6.0 6/7.5 3/5.0
Press Button 0/0.0 0/0.0 2/5.5 1/5.0 0/2.5 3/4.0 7/8.5 2/5.0 0/4.0
Close Microwave 0.5/0 0.5/0 1/5.0 1/2.5 1/4.0 2/3.0 5/7.0 6/8.0 3/4.5

TABLE VII: Real-world expert demonstrations (N = 3). Success rates / task completions out of 10 trials per task.

Task
Method

πbase Flow STRAP HAND(-VF) HAND

K=25 K=10 K=25 K=50 K=25 K=10 K=25 K=50

Reach Green Block 0/1.0 0/0.0 2/3.0 0/1.0 0/1.0 0/1.0 5/6.5 5/7.0 4/6.0
Press Button 0/0.0 0/0.5 1/1.5 0/0.0 0/0.5 0/0.0 4/4.5 5/6.0 2/3.5
Close Microwave 0/0.5 0/0.0 0/0.0 0/0.0 0/0.0 2/5.0 7/8.0 2/4.0 0/1.0

TABLE VIII: Real-world hand demonstration (N = 1). Success rates / task completions out of 10 trials per task.

Metric Value

Task Completion 7.5 / 10
Success Rate 6 / 10

TABLE IX: Real-world Blend Carrot. Task completion and success rate.
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