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Abstract—Task-Oriented Grasping (TOG) presents a
significant challenge, requiring a nuanced understanding
of task semantics, object affordances, and the functional
constraints dictating how an object should be grasped for
a specific task. To address these challenges, we introduce
GRIM (Grasp Re-alignment via Iterative Matching), a
novel training-free framework for task-oriented grasping.
Initially, a coarse alignment strategy is developed using a
combination of geometric cues and principal component
analysis (PCA)-reduced DINO features for similarity scor-
ing. Subsequently, the full grasp pose associated with the
retrieved memory instance is transferred to the aligned
scene object and further refined against a set of task-
agnostic, geometrically stable grasps generated for the
scene object, prioritizing task compatibility. In contrast
to existing learning-based methods, GRIM demonstrates
strong generalization capabilities, achieving robust perfor-
mance with only a small number of conditioning examples.
Project Page

I. INTRODUCTION

Robotic manipulation remains a fundamentally chal-

lenging problem, particularly when it involves grasping

objects in a manner that is appropriate for a specific

task. The ability to reliably grasp a wide variety of

objects is essential—not merely for achieving geometric

stability, but for enabling purposeful interaction. Task-

Oriented Grasping (TOG) goes beyond conventional

grasping strategies by requiring a deeper understanding

of object affordances, task semantics, and the functional

requirements that dictate how an object should be held

to effectively accomplish a given task. Despite growing

interest in Task-Oriented Grasping (TOG), the scarcity of

task-annotated grasping datasets (e.g., Murali et al. [20])

limits the scalability of training-based methods. These

approaches also struggle to generalize to novel object

instances and categories, posing a major challenge for

real-world deployment. To overcome these limitations,

we present GRIM (Grasp Re-alignment via Iterative

Matching), a novel training-free framework that adopts

a retrieve-align-transfer (RAT) strategy. GRIM builds

a dynamic memory of object-task interactions using

purely synthetic data, in-the-wild images, and human

demonstrations, enabling scalable and data-efficient task-

oriented grasping. Given a novel scene object and a tar-

get task, GRIM first retrieves a semantically and visually

similar object-task example from its memory. This re-

trieval is driven by a joint similarity metric that integrates

learned visual representations from DINO embeddings

[22] and semantic embeddings of task descriptions from

CLIP [25]. Once a relevant memory instance is retrieved,

its object point cloud is aligned to the scene object using

a hybrid alignment strategy. This process begins with

a coarse alignment based on geometric cues and PCA-

reduced DINO feature scoring, followed by fine-grained

refinement using the classical Iterative Closest Point

(ICP) algorithm [2]. Finally, the grasp pose associated

with the retrieved memory instance is transferred to the

aligned scene object and further refined by evaluating

it against a set of task-agnostic, geometrically stable

grasps generated for the scene object, prioritizing task

compatibility.

The main contributions of this research are:

1) A flexible memory construction pipeline that in-

tegrates object-task experiences from diverse data

sources, including AI-generated videos, web im-

ages, and human demonstrations.

2) A robust and training-free alignment strategy that

leverages learned dense features for semantically-

aware coarse alignment, followed by precise ICP

refinement, suitable for aligning novel objects

where only partial or noisy observations may be

available.

II. RELATED WORKS

As robots are increasingly expected to interact mean-

ingfully with their environments, Task-Oriented Grasp-

ing (TOG) has emerged as a vital research direc-

tion—focusing not just on grasp stability, but on enabling

task-relevant manipulation. Research in this area has

largely followed two paths: analytical methods and in-

creasingly dominant data-driven techniques. Murali et al.

[20]

https://grim-tog.github.io/


Fig. 1: The figure shows our memory creation pipeline. The Hand-Object Reconstruction block is built on Wu et al.

[32]

A. Data-Driven Approaches

Early data-driven TOG efforts, such as those by Dang

and Allen [3] and Liu et al. [12], focused on learning

class-task-grasp relationships directly from data. How-

ever, as noted by Tang et al. [28], these methods often

yielded unsatisfying performance due to the absence of

external knowledge. Recognizing this, a significant body

of work has explored integrating semantic knowledge.

For instance, Song et al. [27] and Huang et al. [6]

employed Bayesian Networks over constructed semantic

KBs, while Ardón et al. [1], Zese et al. [33] and Liu

et al. [13] utilized probabilistic logic for reasoning over

semantic attributes. These approaches often necessitate

grounding geometric information to pre-defined semantic

representations and grapple with the scalability of their

knowledge bases.

A pivotal challenge, as highlighted by multiple sources

Tang et al. [28], Murali et al. [20], is the scarcity of

large-scale, diverse TOG datasets. Murali et al. [19]

addressed this by contributing the TaskGrasp dataset

and the GCNGrasp algorithm. GCNGrasp leverages the

Knowledge Graph built from this dataset but struggles

with generalizing to concepts outside this graph. More

recently, Tang et al. [28] proposed leveraging LLMs to

inject open-ended semantic knowledge, aiming to im-

prove generalization to novel concepts, though it remains

a training-based method. Other training-dependent works

like Tang et al. [29] and those by Jin et al. [7] and

Nguyen et al. [21] also rely on manually annotated

datasets, underscoring the persistent data acquisition

bottleneck.

Our work, GRIM, diverges from these training-centric

paradigms. While we acknowledge the importance of se-

mantic understanding, we eschew the need for extensive

pre-training on task-specific grasp annotations or reliance

on structured KBs. Instead, GRIM champions a training-

free approach by dynamically constructing a memory

from heterogeneous data sources, including synthetic

data, in-the-wild images, and human demonstrations,

thereby directly addressing the data scarcity and anno-

tation burden that encumbers many prior systems.

B. Training-Free Approaches

The emergence of powerful foundation models has

catalyzed training-free TOG methodologies. Approaches

like Li et al. [10], Rashid et al. [26], and Mirjalili et al.

[18] utilize LLMs or VLMs to map semantic knowledge

to target objects for grasp region selection. As Dong et al.

[4] highlights, while these methods eliminate the need

for model training and manual annotation, they typically

produce only coarse spatial priors for grasping, lacking

the precision required for generating directly executable

grasp poses.

RTAGrasp also explores the training-free approach by

learning TOG constraints from human demonstration

videos. Like us, it avoids training and uses demon-

strations, but GRIM stands out with a more diverse

memory construction pipeline—drawing not only from

human videos, but also from AI-generated content and

web images. GRIM also introduces a unique retrieval-

alignment-transfer process. The work most similar to

GRIM in terms of retrieval is Ju et al. [8], which uses

CLIP to retrieve contact points. However, as RTAGrasp

points out, RoboABC struggles with selecting grasps that



Fig. 2: The figure describes our retrieval, alignment and transfer process. The feature scene and memory objects

are shown with DINOv2 PCA features as color representation. In the feature guided iterative alignment phase, the

red point cloud is retrieved from memory, overlaid with the scene object point cloud.

match specific tasks and with figuring out the correct

grasp orientation (”how to grasp”).

GRIM builds upon the strengths of retrieval but sig-

nificantly extends them. Our retrieval leverages a joint

visual (Oquab et al. [22]) and task-semantic (Radford

et al. [25]) similarity, moving beyond simple contact

points. Crucially, we introduce a robust, semantically-

aware alignment strategy using PCA-reduced DINO fea-

tures followed by ICP, designed to handle novel objects

with partial observations. This fine-grained alignment

facilitates a more precise transfer of the full grasp pose

from a memory instance, which is then further refined

against task-agnostic geometric stability criteria for the

scene object. This contrasts with methods providing

only regional guidance or relying solely on transferred

poses without scene-specific geometric validation. Thus,

GRIM offers a comprehensive training-free solution ad-

dressing both ”where” and ”how” to grasp with enhanced

precision and adaptability to novel instances by sidestep-

ping the constraints of pre-defined datasets and explicit

knowledge engineering.

III. METHODOLOGY

We introduce GRIM (Grasp Re-alignment via Itera-

tive Matching), a training-free framework for TOG. To

achieve this, we adopt a retrieval-alignment-and-transfer

approach. Our framework is divided into primarily into

two steps: Memory Creation (Fig. 1) and Retrieval and

Transfer (Fig. 2). We further describe our method in

detail.

A. Memory Creation

For generalized semantic alignment and transfer to

novel scenes and objects, we create a memory M of

seen objects extracted from diverse data sources. Each

instance in M contains a feature mesh FM of the object,

a 6D grasp pose Gt in the mesh’s coordinate frame, the

corresponding task T , and object name O. To construct

a single memory instance, we begin with an image IHO

depicting a human hand performing a grasp on a target

object, annotated with the corresponding task T . From

this image, we extract the object mesh, the hand mesh,

and their relative pose. For this step, we build upon and

refine the approach of Wu et al. [32], adapting it to our

specific use case (details in Appendix C). Once we have

the hand mesh, we simplify the mesh to extract a 6D

parallel gripper grasp pose Gt for the task T . For an

object O, we have multiple grasp poses in M, and for

a particular task, multiple grasp poses may be valid.

We use the extracted object mesh from the previous

step to create FM . Following the descriptor field rep-

resentation of Wang et al. [30], we construct a feature

mesh by associating DINO-based embeddings with mesh

vertices. Therefore, the constructed memory can be rep-

resented as:

M = {(FM , Gt, T, O)} (1)

All we need is a single frame to create an instance in

our memory. We construct our memory from different

data sources. For each source, the data extraction method

varies slightly:



1) AI Generated Videos: With the rise of generative

AI, SOTA (state-of-the-art) video generation models

[16] are highly capable at generating accurate videos

following a prompt. We leverage one such SOTA model,

Veo 2, for sourcing generated videos. We first make

a list of objects, their images, along with their task

images using the TaskGrasp [20] dataset. We use the

object image, and name to prompt a VLM (Gemini) to

describe the best way of grasping the object for the

particular task and to generate a prompt for a video

generation model accurately describing about the details

of the video depicting the grasping action. This prompt

is fed into the video generative model. Once we have the

video, we sample the middle frame of the video, since

the depiction of grasping remains consistent throughout

the generated videos. This is our primary data generation

method owing to its inherent scalability. For details, refer

to the Appendix B.

2) In-the-Wild Web Images: The Internet has an abun-

dance of images that can be scraped for learning useful

grasping skills. We use human-sampled images from the

internet and annotate the depicted task by leveraging a

VLM. Then any web image with grasping demonstration

can easily be integrated with our framework.

3) Test-Time Expert Demonstrations: At some point,

an agent with existing memory might not perform well

because that memory could not generalize sufficiently.

So, with our method, we can easily append the memory

with just a single test-time image of grasp demonstration

by a human and update the memory.

B. Memory Retrieval

When encountering a novel object or task, humans

often draw upon past experiences, recalling the most

analogous situations from memory [14, 15]. Inspired

by this, our system implements a similarity search

mechanism within its memory database M. Consider

a scenario where the robot encounters a novel scene

containing a target object, represented by its point cloud

PSO and associated per-point DINO features FD
SO. The

robot is assigned a current task TS for this object. The

features FD
SO are extracted from the scene, akin to dense

descriptor fields [30, 24]. Following segmentation of

the target object PSO, its per-point DINO features FD
SO

are averaged to yield a global object descriptor F̄D
SO.

Similarly, the current scene task TS is encoded using a

text encoder (e.g., CLIP [25]) to obtain its embedding

ETS
.

The memory database M contains a set of stored

objects. Each memory object i ∈ M is represented

by its point cloud PMO,i, its per-point DINO features

FD
MO,i, and an associated global DINO descriptor F̄D

MO,i

(obtained by averaging FD
MO,i). Each memory object i

is also associated with a set of tasks {TM,i,j}, where

each task TM,i,j has a corresponding CLIP embedding

ETM,i,j
and an associated grasp pose GM,i,j .

To retrieve the most relevant memory instance, we

compute a joint similarity score Sjoint(i, j) for each

memory object i and its associated task j:

Sjoint(i, j) = simcos(F̄
D
SO, F̄

D
MO,i) · simcos(ETS

, ETM,i,j
)

(2)

where simcos(·, ·) denotes the cosine similarity. This

score is computed over all memory object-task pairs in

M. We retrieve the memory instance with the highest

joint similarity.

C. Alignment Module

After the semantic memory retrieval, we have a source

memory object (point cloud PMO with DINO features

FD
MO) similar to the masked scene object (PSO with

DINO features FD
SO). A PCA model, MPCA, is trained

on the original FD
MO and FD

SO to project DINO features

into a lower DPCA-dimensional space as F
′D
MO and F

′D
SO.

We begin the alignment process by computing centroids

cMO and cSO, and an initial scale factor sg by comparing

eigenvalues along the principal geometric components

of PMO and PSO. The PMO point clouds often have

very different size than that of PSO; applying the scale

factor sg helps in matching their sizes. Then we do a grid

search over Euler angles, generating candidate rotation

matrices {Ri}. Each Ri forms an initial transformation:

Tinit,i(p) = sgRi(p− cMO) + cSO (3)

We aim to find the closest initial coarse alignment here,

so we calculate a score for each candidate. One might

use Chamfer distance between the Tinit,i(PMO) and PSO

but here we do not aim to find the candidates with the

best geometric match but with the best feature match.

For better generalization we want feature alignment of

OM with OS , as the memory might not always contain

the exact same object as the scene (e.g., a spoon handle

with a spatula handle). For each transformed source point

pm of PMO, we find its Keval nearest neighbors {ps,k}
in PSO. The cost for each pair (pm, ps,k) is a weighted

sum as shown in Eq. 4

Cpair = wg∥pm − ps,k∥
2 +wf (1− cos(F

′D
M,pm

, F
′D
S,ps,k

))
(4)

where F
′D
X,p denotes the PCA-DINO feature of point p

in dataset X . wg and wf are the weights assigned to

geometric distance and feature distance. The minimum

Cpair over Keval neighbors gives the point’s cost, and the

average of these point costs determines Score(Tinit,i).
The top Korient initial transformations {T ∗

init} undergo

ICP refinement, yielding refined poses {Tref,j}. Finally,

these refined poses are re-evaluated using the same

combined score metric, with a potentially tighter distance



TABLE I: Comparison of Precision with different methods

Method
Novel Instances

Paint
roller

Brush Tongs Strainer Frying
Pan

Fork Mortar Ice
Scrapper

Pizza
Cutter

Random 0.30 0.66 0.23 0.24 0.32 0.26 0.31 0.60 0.50
RTAGrasp 0.39 0.93 0.28 0.55 0.42 0.35 0.37 0.91 0.57

GRIM(Ours) 0.89 0.90 0.58 0.58 0.60 0.40 0.72 0.71 0.92

threshold. The Tref,j yielding the lowest final score is

selected as the optimal transformation Tfinal.

D. Grasp Transfer

Following alignment, the retrieved memory grasp GM

is transformed into the scene using the final alignment

Tfinal to yield the scene grasp GS = Tfinal · GM , ap-

propriately scaled for the target. However, GS might

not represent an optimal or directly executable grasp

pose for the scene object geometry and robot gripper.

To address this, we adopt a sampling-and-evaluation

strategy inspired by prior work RTAGrasp [4]. We first

sample N task-agnostic, geometrically feasible grasp

poses {GA,i}
N
i=1

using AnyGrasp [5]. Each candidate

grasp GA,i = (RA,i, tA,i) is associated with a geometric

stability score Sgeo,i.

To evaluate the suitability of each candidate GA,i

with respect to the intent captured by the transferred

memory grasp GS , we define a task-compatibility score.

Let ptarget = tS be the target position derived from GS ,

and vtarget = RSez be its primary approach direction

(where ez = [0, 0, 1]T ). For each candidate grasp GA,i,

let its approach direction be oz,i = RA,iez . The task-

compatibility score Stask,i for GA,i is then computed as:

Stask,i =
vtarget · oz,i

∥vtarget∥∥oz,i∥
+ exp

(

−
∥tA,i − ptarget∥

2

2σ2

)

(5)

where σ = 0.1 is a scaling factor. The first term

in Eq. (5) measures the cosine similarity between the

candidate grasp’s approach direction and the target di-

rection derived from the memory grasp. The second term

is a Gaussian decay function that penalizes positional

deviation from the target position. Since ∥vtarget∥ = 1
and ∥oz,i∥ = 1 (as they are column vectors from rotation

matrices or normalized direction vectors), the first term

simplifies to vtarget · oz,i.

The final score Si for each candidate grasp GA,i

combines task-compatibility and geometric stability:

Si = wtaskStask,i + wgeoSgeo,i (6)

Following RTAGrasp [4], we prioritize task-

compatibility by setting wtask = 0.95 and wgeo = 0.05,

given that most candidates generated by the sampler

are already geometrically stable. This sampling-and-

evaluation approach allows us to leverage robust task-

agnostic grasp generation techniques while effectively

aligning the selected grasp with the task context inferred

from the memory system, without requiring intricate

hand-to-gripper re-targeting. The robot then selects the

candidate grasp G∗

A = argmaxi Si for execution. In

our implementation, we use AnyGrasp [5] as a grasp

sampler, although other stable grasp synthesis methods

could be used.

IV. EXPERIMENTS AND RESULTS

A. Baselines

We compare GRIM with the following methods: (1)

Random, which is Task-Agnostic and focuses only

on grasp stability. (2) RTAGrasp [4]is a training-free

method that, like our approach, employs a memory

retrieval approach but differs from ours in that it uses

2D feature matching for memory transfer. For a fair

comparison, we use the same data source and amount

to create memory for RTAGrasp.

B. Dataset

We extensively test our framework on the TaskGrasp

[20] dataset, and compare the results with the baselines.

Since both the approaches use out-of-domain data, we

evaluate on all of positive example data of TaskGrasp.

We also deliberately modify and shorten the memory and

create two splits: held-out objects and held-out tasks. For

the held-out object split, there is no identical memory

object and for the held-out task split, there might be an

identical object but never the same task present in the

memory.

C. Memory

GRIM’s memory buffer contains data from 180 gen-

erated videos, 15 internet-sampled images and 15 self-

demonstrated images, totaling to 210 grasp data in-

stances. We use the same images to create a memory

buffer for RTAGrasp, we estimate the 2D grasp point

and 3D direction vector from our 6D grasp pose.



D. Evaluation Metric

For our approach and all the baselines, at the end,

we classify the 25 annotated grasp poses present in the

TaskGrasp dataset for all object instances. For GRIM

and RTAGrasp, we sample from the task-agnostic grasp

poses available in TaskGrasp, and these sampled poses

are labeled as true. We use Average Precision over

classification of grasp poses as our evaluation metric.

E. Results

TABLE II: Average Precision calculated over all data,

held-out objects, and held-out tasks.

Method All Data Held-out Objects Held-out Tasks

Random 0.49 0.41 0.43
RTAGrasp 0.58 0.52 0.51

GRIM (Ours) 0.67 0.65 0.64

Table II presents the average precision across the

complete TaskGrasp dataset (All Data), the Held-Out

Objects split, and the Held-Out Tasks split. In the

held-out settings, we exclude all object/task data from

the memory that appears in the inference split. Our

method demonstrates strong generalization to unseen

objects and tasks, outperforming other approaches. These

results highlight the effectiveness of our 3D feature-

guided alignment and transfer strategy over traditional

2D feature matching and transfer methods. Performance

on a subset of individual objects is shown in Table I.

V. CONCLUSION

In this research, we present a novel training-free

framework for task-oriented grasping. Experimental re-

sults demonstrate that our approach generalizes more

effectively than 2D feature matching and transfer-based

methods. By leveraging DINO-learned visual features,

our method achieves robust semantic alignment that can-

not be achieved through geometric cues alone. Although

our memory module plays a crucial role in overall ef-

fectiveness, we demonstrate strong performance even on

synthetic data, which is typically noisy and challenging.

Currently, we rely on visual features without explicit

geometric understanding; incorporating geometric infor-

mation, for example, through digital twin generation

[17], could further improve the effectiveness of our

approach.
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Rothkopf, and Peter König. The world as an

external memory: The price of saccades in a senso-

rimotor task. Frontiers in behavioral neuroscience,

12:253, 2018.

[16] Andrew Melnik, Michal Ljubljanac, Cong Lu,

Qi Yan, Weiming Ren, and Helge Ritter. Video

diffusion models: A survey. Transactions on Ma-

chine Learning Research, 2024.

[17] Andrew Melnik, Benjamin Alt, Giang Nguyen,

Artur Wilkowski, Qirui Wu, Sinan Harms, Helge

Rhodin, Manolis Savva, Michael Beetz, et al. Dig-

ital twin generation from visual data: A survey.

arXiv preprint arXiv:2504.13159, 2025.

[18] Reihaneh Mirjalili, Michael Krawez, Simone

Silenzi, Yannik Blei, and Wolfram Burgard. Lan-

grasp: Using large language models for semantic

object grasping, 2024. URL https://arxiv.org/abs/

2310.05239.

[19] Adithyavairavan Murali, Weiyu Liu, Kenneth

Marino, S. Chernova, and Abhinav Kumar Gupta.

Same object, different grasps: Data and semantic

knowledge for task-oriented grasping. In Con-

ference on Robot Learning, 2020. URL https:

//api.semanticscholar.org/CorpusID:226306649.

[20] Adithyavairavan Murali, Weiyu Liu, Kenneth

Marino, Sonia Chernova, and Abhinav Gupta.

Same object, different grasps: Data and semantic

knowledge for task-oriented grasping. In Confer-

ence on Robot Learning, 2020.

[21] Toan Nguyen, Minh N. Vu, Baoru Huang, Tuan Van

Vo, Vy Truong, Ngan Le, Thi DK Vo, Bac Le, and

Anh Nguyen. Language-conditioned affordance-

pose detection in 3d point clouds. 2024 IEEE

International Conference on Robotics and Automa-

tion (ICRA), pages 3071–3078, 2023. URL https:

//api.semanticscholar.org/CorpusID:262063614.

[22] Maxime Oquab, Timothée Darcet, Théo
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APPENDIX

A. VLM-Based Reasoning and Video Prompt Generation

For the goal of generating a video depicting a particular task, we first prompt a VLM to describe the best way of

grasping and generate a prompt for the same. We use Gemini-2.5-Flash as our VLM. This task requires the VLM

to reason about the object and task semantics. We also put the scene image as reference for scene-conditioned

reasoning. The prompt we use:

VLM Prompt

For an object {OBJ}, I want you to describe the best way a single human hand can hold this object for the

task of {TASK}. The {OBJ}'s image is given, please refer to the image while reasoning about the grasping

way for the given task.

For the holding method, provide:

1. A concise, single-line description of the holding method. (e.g., "Holding the knife by its handle for

cutting.")

2. A detailed text-to-video generation prompt (single paragraph, 7-8 lines). This prompt must clearly

describe the grasping method, the hand's position relative to the object/parts. It also must specify that

the video should feature a single hand, the object, and the hand must be completely visible throughout the

video, and the entire object must be in frame at all times.

3. There must be only the right hand in the video prompt. Never use left hand or both hands in the prompt.

Your response should be in JSON format, where each element of the array is an object.

For the object-task pair, the output JSON must have exactly two string keys: "way_to_hold" and

"video_prompt".

Do not include any other text, explanations, or markdown formatting like ```json ... ``` outside of the JSON

array itself.

Example of the JSON array structure for a "cup" and task of "drink":

{

"way_to_hold": "Holding a ceramic cup firmly by its D-shaped handle.",

"video_prompt": "Generate a video depicting a single human hand securely gripping the D-shaped handle

of a standard ceramic coffee cup. The fingers should be visibly wrapped through the handle's opening,

with the thumb pressing firmly against the top curve of the handle for stability, ensuring the cup is

held upright. The palm is not touching the body of the cup. The hand must be completely visible

throughout the video, and the entire cup must be in frame at all times. The video should focus on the

hand-object interaction, showing the grip and the cup's details clearly."

}

Now, generate this JSON for the object {OBJ}.

We notice that for many cases the grasp pose described by the VLM remains fairly the same. So, in order to be

efficient with the number of generated videos, we use a slightly different approach. We first prompt the VLM to

generate K (3 in our case) distinct ways of grasping the object and then map these three ways of grasping to all

the tasks. This way is much more efficient as we are generating three videos per object, and these can be mapped

to all the tasks present for that object.

K Grasping Ways Prompt

For an object "{OBJ}", I want you to describe multiple ways (3 ways preferable) a single human hand can

hold this object.

Ensure the holding/grasping methods are distinct, primarily differing in the grasping location on the

object. Assume I will also provide an image of the scene with the video generation prompt.

For each holding method, provide:

1. A concise, single-line description of the holding method. (e.g., "Holding the knife by its handle for

cutting.")

2. A detailed text-to-video generation prompt (single paragraph, 7-8 lines). This prompt must clearly

describe the grasping method, the hand's position relative to the object/parts. It also must specify that

the video should feature a single hand, the object, and The hand must be completely visible throughout the

video, and the entire object must be in frame at all times.

3. There MUST be only the right hand in the video prompt. Never use left hand or both hands in the prompt.

Your response MUST be a JSON array, where each element of the array is an object.

Each object in the array must have exactly two string keys: "way_to_hold" and "video_prompt".

Do not include any other text, explanations, or markdown formatting like ```json ... ``` outside of the JSON

array itself.

Example of the JSON array structure for a "cup":

[



{

"way_to_hold": "Holding a ceramic cup firmly by its D-shaped handle.",

"video_prompt": "Generate a video depicting a single human hand securely gripping the D-shaped handle

of a standard ceramic coffee cup. The fingers should be visibly wrapped through the handle's opening,

with the thumb pressing firmly against the top curve of the handle for stability, ensuring the cup is

held upright. The palm is not touching the body of the cup. The hand must be completely visible

throughout the video, and the entire cup must be in frame at all times. The video should focus on the

hand-object interaction, showing the grip and the cup's details clearly."

},

{

"way_to_hold": "Cradling the body of a warm ceramic cup with one hand.",

"video_prompt": "Create a video showcasing a single human hand gently cradling the main cylindrical

body of a warm ceramic cup. The fingers should be spread slightly, conforming to the curve of the cup,

with the palm providing broad support from underneath and the side. The thumb might rest along the

upper rim or side, opposite the fingers. The hand must be completely visible throughout the video, and

the entire cup must be in frame at all times. The video should highlight the hand's gentle grip and the

cup's surface texture."

},

{

"way_to_hold": "Pinching the rim of an empty teacup with thumb and index finger.",

"video_prompt": "Generate a video that illustrate a single human hand delicately holding an empty,

lightweight teacup by its rim. The grasp involves the thumb pressing on the outer surface of the rim

and the index finger (and possibly middle finger) supporting it from the inner surface, a precise pinch

grip. The remaining fingers might be curled or extended gracefully away from the cup body. The hand

must be completely visible throughout the video, and the entire cup must be in frame at all times. The

video should focus on the hand's dexterity and the teacup's delicate design."

}

Now, generate this JSON array for the object "{OBJ}".

Task-Video Mapping Prompt

You are an expert in robotics and human-object interaction with a focus on practicality.

Your task is to identify ALL suitable ways a single human hand can hold an object to perform a specific

task.

Prioritize inclusivity: if a holding method is **possible or doable** for the task, even if not the

absolute most optimal or common way, it should be considered valid. We want to ensure we capture at least

one plausible holding method if any exists.

Object: "{OBJ}" (original ID: "{XXX_OBJ}")

Task to perform: "{task_name}"

Consider the following predefined ways to hold the object "{OBJ}", including their descriptions and

intended video visualizations:

{holding_options_str}

Reason deeply about the physical requirements of the task "{TASK}" when performed with the object "{OBJ}".

Consider factors like:

- Stability needed for the task.

- Precision required.

- Force application (if any).

- Necessary orientation of the object.

- Freedom of movement for the hand or object parts.

- Safety and realism of the hold for the given task.

Based on your reasoning, identify **ALL holding methods from the list above that are possible or doable**
for a single human hand to effectively and realistically perform the task. A task can have multiple valid

ways to hold the object. Your goal is to be comprehensive.

Your response MUST be a JSON object containing a single key "valid_indices".

The value for "valid_indices" must be a list of integers, where each integer is an index from the provided

list of holding methods.

For example:

If methods 0 and 2 are suitable:

{

"valid_indices": [0, 2]

}

If only method 1 is suitable:

{

"valid_indices": [1]

}

If all methods (0, 1, and 2) are considered possible or doable:

{

"valid_indices": [0, 1, 2]

}

There must always be at least one index in the list.

Do not include any other text, explanation, or markdown formatting outside of this JSON object.



B. AI Generated Video

A significant portion of our memory dataset (86%)

is constructed using AI-generated videos. For this pur-

pose, we leverage the capabilities of the Veo 2 genera-

tive model. While image-based generative models often

struggle with interpreting complex textual prompts, we

found that video generation models exhibit better fidelity

in this regard. Specifically, generated videos demonstrate

improved performance in adhering to grasping instruc-

tions, such as those provided by a large language model

like Gemini.

However, these models can still struggle with non-

intuitive scenarios or when requiring nuanced object in-

teraction. For instance, if an object possesses a prominent

handle, the generated video might default to a grasp

on the handle, even if the prompt specifies a different

interaction point. Examples illustrating the outputs from

our video generation pipeline, including variations based

on different task prompts given a reference image, are

presented in Figure 3. We anticipate that continued

advancements in such generative models will directly

translate to enhanced capabilities and performance for

our overall framework, further improving its ability to

learn from diverse and complex interactions.

C. 3D Hand and Object Reconstruction from Images

To populate our grasp memory M with task-oriented

6-DOF parallel gripper poses, we process single images

depicting human hands interacting with objects. This

process leverages and adapts the MCC-HO framework

presented by Wu et al. [32] for hand-object 3D re-

construction. When processing AI-generated videos (as

detailed further in Appendix B, if applicable, or simply

”from AI-generated videos”), a representative frame is

typically selected by sampling from the middle of the

video, as grasping actions are often consistently depicted

there. For other image sources, a single static image is

used directly.

The pipeline begins with segmenting the hand and

object from the input image. For this, we employ

Grounding SAM, which typically combines a text-

promptable object detector (such as Grounding DINO

by Liu et al. [11]) with the Segment Anything Model

(SAM) by Kirillov et al. [9]. In our implementa-

tion, we utilize a SAM model with a ViT-Base back-

bone (facebook/sam-vit-base) for segmentation,

guided by prompts to acquire precise masks of the

interacting entities. These masks guide the subsequent

3D reconstruction.

Following segmentation, the MCC-HO framework is

used to jointly reconstruct the 3D geometry of both

the hand and the held object from the single view. A

critical part of the object reconstruction module, adapted

for our memory creation, involves an iterative alignment

procedure. This alignment optimizes the fit of a retrieved

or generated object model to the visual and geometric

cues from the image. The optimization function for this

alignment, Lalign, is a weighted sum of a Chamfer loss

(LCD) and a DINO PCA-based feature similarity loss

(LDINO PCA):

Lalign = LCD(Ptarget, Pcand(R, T, s)) + wDINO · LDINO PCA

(7)

where:

• Ptarget is the combined target point cloud (from the

initial object reconstruction and the known hand

geometry).

• Pcand(R, T, s) is the candidate object point cloud,

transformed by rotation R, translation T , and scale

s.

• LCD(P1, P2) =
∑

x∈P1
miny∈P2

∥x − y∥2
2

+
∑

y∈P2
minx∈P1

∥y − x∥2
2

is the Chamfer distance

between two point sets P1 and P2.

• LDINO PCA = 1 −
simcos(f̄PCA(D(Itarget)), f̄PCA(D(Icand))) measures

the cosine dissimilarity between the mean PCA-

projected DINOv2 features. D(I) represents the

DINOv2 features extracted from an image I

(facebook/dinov2-small-patch14-224,

which corresponds to ViT-S/14), f̄PCA denotes the

mean of these features after PCA projection, Itarget

is the input image patch, and Icand is the rendered

image of the candidate object.

• wDINO is the weight for the DINO loss component,

set to 0.005 in our setup.

The alignment proceeds through several stages: an

initial alignment of principal axes, followed by coarse ro-

tational adjustments via flips about these axes, then fine-

grained rotational refinement, and finally, fine-tuning of

the translation. The entire pipeline, from image input to

the reconstructed hand and object, takes approximately

7 minutes per image to process on an Nvidia RTX4060

laptop GPU.

Once the 3D point cloud of the human hand is accu-

rately reconstructed by the MCC-HO module, we convert

this detailed five-fingered representation into a simplified

6-DOF parallel gripper pose. This conversion is achieved

using our algorithm, which first identifies key segments

of the hand—specifically the thumb, index finger, middle

finger, and the palm/back of the hand—by processing

the hand vertices. The centroids of these segments are

then used to define the gripper’s characteristics. The

midpoint between the thumb centroid and the combined

centroid of the index and middle fingers defines the

gripper’s center (translation). The vector connecting the

thumb and opposing fingers establishes the primary axis

for gripper width and one component of its orientation.



The palm centroid provides a reference point to better

estimate the approach vector and thus the complete 3D

orientation (rotation matrix) of the gripper. The distance

between the opposing finger segments determines the

gripper width, and an estimated gripper finger length is

derived based on the hand’s overall dimensions and the

relative positions of the segments. This method robustly

extracts a functional parallel gripper pose suitable for

robotic execution.

D. Feature Guided Alignment

The most crucial part of our grasp transfer frame-

work lies in Feature Guided 3D alignment. We use

DINOv2-vitl14’s visual features for creating our feature-

rich point cloud, both for the memory object and the

scene. Subsequently, we segment the target object using

Grounded-SAM to obtain its feature-rich point cloud,

a process similar to that described by Wang et al.

[31]. We explored various algorithms for source and

target point cloud alignment, including pure geometric

alignment and pure feature-based alignment. However,

we found that neither performs optimally in isolation.

Pure geometric alignment necessitates that the target and

source point clouds possess roughly similar shapes; even

with complete point clouds, it frequently converges to

a flipped orientation of the correct one. Furthermore,

this method suffers particularly in cases involving noisy

or partial point clouds. As for purely feature-based

matching, we observe that methods effective in 2D image

domains—such as those in Murali et al. [20]—do not

translate well to 3D. This is primarily because DINO

features, being trained on 2D images, capture only

visual information. When these features are distilled into

3D, they suffer from object symmetry, often leading

to incorrect correspondences such as matching features

from the right side of an object to its left, and vice versa.

To this end, we designed a hybrid alignment algorithm

that synergistically leverages both visual features and

geometric cues. This approach is formalized by a cost

function for each potential point pair (pm, ps,k) between

the memory point cloud (m) and a scene point cloud (s),

calculated as a weighted sum:

Cpair = wg∥pm − ps,k∥
2 +wf (1− cos(F

′D
M,pm

, F
′D
S,ps,k

))
(8)

where pm is a point from the memory object, ps,k is a

point from the scene object, and F
′D
X,p denotes the PCA-

DINO feature of point p in dataset X . The terms wg and

wf represent the weights assigned to the geometric and

feature similarity components, respectively. Our Feature

Guided Iterative Alignment approach is able to perform

well even in cases where pure geometric methods fail,

demonstrating significant robustness and accuracy.

The generalization of our feature-guided alignment is

particularly evident when aligning objects of different

categories, as illustrated in the second section of Figure 5

(”Alignments between Objects of Different Category”).

For instance, our framework demonstrates that an object

in memory possessing a handle, such as a Ladle, can

successfully generalize its alignment to various other

objects in the scene that also feature handles, like a

Grater or a Whisk. This ability to identify and match

salient functional parts like handles across diverse object

types underscores the semantic understanding embedded

within our hybrid approach, facilitated by the DINO

features guiding the geometric alignment.

Further highlighting the advantages of our method,

Figure 6 provides a direct visual comparison between

pure geometric alignment and our feature-guided align-

ment for several challenging pairs. For the pure geo-

metric alignment results shown, we effectively set the

feature weight wf = 0 in Equation 8, relying solely

on geometric proximity (wg maintained). As can be

observed, the pure geometric approach often misaligns,

converges to local minima, or results in flipped orienta-

tions. In contrast, our feature-guided alignment consis-

tently produces more accurate and semantically correct

alignments. With these results, it becomes apparent that

our Feature Guided Iterative Alignment stands superior,

offering a more robust and generalizable solution for 3D

object alignment in complex scenarios.



Reference Image (a) (b) (c)

Fig. 3: On the left we have the reference image used for video generation. (a), (b) and (c) are sampled frames from

the generated videos using different task prompts.



Input Mask
Reconstructed Point

Cloud
Rendered View

Aligned hand, gripper

and object

Fig. 4: Visualization of the 3D hand-object reconstruction and grasp pose derivation pipeline for various objects.

Each section shows four stages from left to right: Input image masked by Grounding SAM; Reconstructed 3D Point

Cloud (PCD) of the object; Rendered view of the reconstructed object geometry used for DINO feature alignment;

and Final aligned pose showing the hand (obtained using HaMeR by Pavlakos et al. [23]) and the derived parallel

gripper relative to the target object.



Alignment on Same Object Category

(a) Ladle to Ladle (b) Mortar to Mortar (c) Mug to Mug (d) Scissors to Scissors

Alignments between Objects of Different Category

(e) Ladle to Grater (f) Ladle to Tiller (g) Ladle to Squeegee (h) Ladle to Whisk

(i) Ladle to Paint Roller (j) Mug to Mixing Bowl (k) Mug to Pitcher (l) Mug to Measuring Cup

(m) Pan to Spatula (n) Pan to Grater (o) Spatula to Pan (p) Spatula to Spoon

(q) Spatula to Fork (r) Spoon to Toilet Brush (s) Spoon to Paint Roller (t) Spoon to Hammer

Fig. 5: Examples of Feature Guided Iterative Alignment. In the sub-captions, the source object (retrieved from

memory, often visualized as a red point cloud) is aligned to the target object (from the scene, often visualized as

a blue point cloud). The first section shows alignments where source and target objects are of the same category

(e.g., Ladle to Ladle). The second section demonstrates alignments between objects of different categories (e.g.,

Ladle to Grater), indicating the framework’s ability to generalize across diverse pairings.



Matching Pair Feature-Guided Alignment Pure Geometrical Alignment

Ladle to Grater

Mortar to Mortar

Mug to Pitcher

Mug to Measuring Cup

Pan to Grater

Spoon to Paint Roller

Fig. 6: Comparison of object alignments. Column 1 describes the matching pair (Source in red, Target in blue).

Column 2 shows results from Feature-Guided Alignment, and Column 3 shows results from Pure Geometrical

Alignment. Each row displays a corresponding pair.
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