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Abstract—Understanding the inner representation of a neural
network helps users improve models. Concept-based methods have
become a popular choice for explaining deep neural networks
post-hoc because, unlike most other explainable AI techniques,
they can be used to test high-level visual “concepts” that are not
directly related to feature attributes. For instance, the concept of
“stripes” is important to classify an image as a zebra. Concept-
based explanation methods, however, require practitioners to
guess and manually collect multiple candidate concept image
sets, making the process labor-intensive and prone to overlooking
important concepts. Addressing this limitation, in this paper, we
frame concept image set creation as an image generation problem.
However, since naively using a standard generative model does not
result in meaningful concepts, we devise a reinforcement learning-
based preference optimization (RLPO) algorithm that fine-tunes
a vision-language generative model from approximate textual
descriptions of concepts. Through experiments, we demonstrate
our method’s ability to efficiently and reliably articulate diverse
concepts that are otherwise challenging to craft manually, enabling
interpretable human oversight in settings such as robotics. Github:
https://github.com/aditya-taparia/RLPO

I. INTRODUCTION

In an era where black box deep neural networks (DNNs)
are becoming seemingly capable of performing general enough
tasks, our ability to explain their decisions post-hoc has
become even more important before deploying them in the
real world. Humans utilize high-level concepts as a medium
for providing and perceiving explanations. In this light, post-
hoc concept-based explanation techniques, such as Testing
with Concept Activation Vectors (TCAV) [7], have gained
great popularity. Their ability to use abstractions that are not
necessarily feature attributes or some pixels in test images helps
with communicating these high-level concepts with humans.
For instance, as demonstrated in TCAV, the concept of stripes
is important to explain why an image is classified as a zebra.

Although concept-based XAI methods are a good representa-
tion, their requirement to create collections of candidate concept
sets necessitate the human to know which concepts to test for.
This is typically done by guessing what concepts might matter
and manually extracting such candidate concept tests from
existing datasets. While the stripe-zebra analogy is attractive
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Fig. 1. Humans can imagine (green) a few concepts to understand neural
networks’ representations (purple). Some other concepts can be retrieved from
test images themselves through, for instance, segmentation (orange). However,
if we generate concepts (blue), they will capture even a broader set of concepts.
RLPO is designed to make this generation process more targeted toward neural
networks’ representations (purple ∩ blue).

as an example, where it is obvious that stripes is important
to predict zebras, in most applications, we cannot guess what
concepts to test for, limiting the usefulness of concept-based
methods in testing real-world systems. Additionally, even if a
human can guess a few concepts, it does not encompass most
concepts a DNN has learned because the DNN was trained
without any human intervention. Therefore, it is important to
automatically find human-centric concepts that matter to the
DNN’s decision-making process.

As attempts to automatically discover and create such
concept sets, several work has focused on segmenting the
image and use them as potential concepts, either directly [5]
or through factor analysis [3, 4]. In such methods, which we
call as retrieval methods, because the extracted concept set is
already part of the test images, it is difficult for them to imagine
new concepts that do not have a direct pixel-level resemblance
to the original image class. For instance, as shown in Fig. 1, it is
arguable if some patches of zebra—instead of stripes—qualify
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Fig. 2. (a) Our proposed algorithm, RLPO, iteratively refines the concepts ci that are generated by a Stable Diffusion (SD) model by optimizing SD weights
based on an action ai. Each step in this update process provides an explanation at a different level of abstraction. (b) Three concepts identified by our approach
for the zebra class. Concepts are represented as images generated by SD.

as high-level concepts to explain the zebra class.
By departing from existing concept set creation practices

of human handcrafting and retrieval, we redefine concept set
creation as a concept generation problem. Modern generative
models such as stable diffusion (SD) can produce noise-free,
realistic images. Nevertheless, since a generative model can
generate arbitrary images, we need to guide it to produce
what we desire by using text prompts. One obvious approach
is to engineer long, descriptive text prompts to generate
concepts. However, engineering such prompts is not realistic.
Therefore, to automate prompting, we extract keywords related
to the image using an image-to-text model (we call them seed
prompts). As shown in Fig. 2, we propose a reinforcement
learning-based preference optimization (RLPO) algorithm
that guides the generative model to automatically generate
meaningful concepts based on these seed prompts. Preferences
are solely decided by the explanation score—not by a human—
that the deep RL (DRL) algorithm is trying to optimize.

II. PRELIMINARIES AND RELATED WORK

Testing with Concept Activation Vectors (TCAV): The
TCAV score quantifies the importance of a “concept” for a
specific class in a DNN classifier [7]. Here, a concept is defined
broadly as a high-level, human-interpretable idea such as stripes,
sad faces, etc. A concept (e.g., stripes), c, is represented by
sample images, Xc (e.g., images of stripes). For a given set of
test images, Xm (e.g., zebra images), that belongs to the same
decision class (e.g., zebra), m, TCAV scores (TS) is defined
as the fraction of test images for which the model’s prediction
increases in the direction of the concept. By decomposing
the DNN under test as f(x) = f2(f1(x)), where f1(x) is the
activation at layer l, TCAV score is computed as,

TSc,m =
1

|Xm|
∑
Xm

I
(

∂output
∂activations

· (c direction) > 0

)
=

1

|Xm|
∑

xi∈Xm

I
(

∂f(xi)

∂f1(xi)
· v > 0

)
(1)

Here, I is the indicator function that counts how often the
directional derivative is positive. Concept activations vector

(CAV), v, is the normal vector to the hyperplane that sepa-
rates activations of concept images, {f1(x);x ∈ Xc}, from
activations of random images, {f1(x);x ∈ Xr}.

ACE [5] introduced a way to automatically find relevant
concepts by extracting them from the input class. It uses image
segmentation of multiple sizes to get a pool of segments and
then grouped them based on similarity to compute TCAV scores.
Though the ACE concepts are human understandable, they are
very noisy. EAC [17] extracts concepts through segmentation.
CRAFT [3] introduced a recursive strategy to detect and
decompose concepts across layers. Lens [4] elegantly unified
concept extraction and importance estimation as a dictionary
learning problem. However, since all these methods obtain
concepts from test images, the concepts they generate tend to
be very similar to the actual class. In contrast, we generate
concepts from a generative model. Under generative models,
LCDA [22] simply queries an LLM to get attributes but does
not generate concepts.

Deep Q Networks (DQN): DQN [12] is a DRL algorithm
that combines Q-learning with deep neural networks. It is
designed to learn optimal policies in environments with
large state and action spaces by approximating the Q-value
function using a neural network. A separate target network,
Qtarget(s, a

′, θ′), Here a′ is argmaxQ(snext, a) which is a copy
of the Q-network with parameters θ′, is updated less frequently
to provide stable targets for Q-value updates,

Q(st, at)← Q(st, at) + α
(
r(st, at)

+ γmax
a′

Qtarget(st+1, a
′)−Q(st, at)

) (2)

Here, st is the state at step t, at is the action taken in state
st, and rt is the reward received after taking action at. The
parameters α and γ are learning rate and discount factor,
respectively. DQNs are used for controlling robots [20, 16, 1],
detecting failures [14], etc.

Preference Optimization: Optimizing generative models
directly through preference data was first proposed in Direct
Preference Optimization (DPO) [13]. It is a technique used to
ensure models, such as large language models, learn to align its
outputs with human preference by asking a human which of its



generated output is preferred. This technique was later extended
to diffusion models in Diffusion-DPO [21], where they updated
Stable Diffusion XL model using Pick-a-Pic dataset (human
preferred generated image dataset). Unlike traditional image or
text generation tasks, where the dataset for human preferred
outputs are readily available, it is hard to have a general enough
dataset for XAI tasks. To counter this problem, we provide
preference information by using the TCAV score instead of a
human, and use it to align the text-to-image generative model
to generate concept images that matters for the neural network
under test.

III. METHODOLOGY: REINFORCEMENT LEARNING-BASED
PREFERENCE OPTIMIZATION

Our objective is to find a set of concept images, C, that
maximize the TCAV scores, TSc,m, indicating that the concepts
are relevant to the neural networks’ decision-making process.
We leverage state-of-the-art text-to-image generative models to
generate high-quality explainable concepts. However, because
the search space of potential text prompts is too large, we use
deep RL to guide the image generation process. As described
in Fig. 3 and Algorithm 1, RLPO, uses RL to pick potential
keywords from a predefined list and iteratively optimizes stable
diffusion weights to generate images that have a preference
for higher TCAV scores. This process is described below.

Algorithm 1: The RLPO algorithm. Appendix B for
the expanded algorithm.
Input : Set of test images f(·)

1 Run pre-processing and obtain seed prompts (action
space);

2 for each episode do
3 for each time step t do
4 Execute at by picking a seed prompt;
5 Generate image groups G1 and G2;
6 Evaluate TCAV scores TS1 and TS2;
7 Update SD based on the better score;
8 Compute reward;

Output : Set of concept images

Notation: Our framework contains three core deep learning
models: the network under test f(·), the image generator g(·),
and the deep RL network h(·). First, we have a pre-trained
neural network classifier that we want to explain. We then
have a generative neural network, whose purpose is generating
concept image sets, given some text prompts. In this paper,
we use Stable Diffusion (SD) v1-5 as the generator as it is
a state-of-the-art generative model that can generate realistic
images. The core search algorithm that we train is a DQN.

A. Extracting Seed Prompts

Since a generative model can generate arbitrary images,
if we provide good starting point for optimization then the
convergence to explainable states would be faster. In this paper,

to extract seed prompts for a particular class we make use of
the off-the-shelf VQA model.

B. Deep Reinforcement Learning Formulation

Our objective of using deep RL is automatically controlling
text input of Stable Diffusion. As text input, we start with
K seed prompts from Section III-A, that have the potential
to generate meaningful concept images after many deep RL
episodes. We setup our RL state-action at iteration t as,

• Action at: Selecting a seed prompt, kt ∈ K, that best
influences concept image generation.

• State st: Preferred concept images generated from the
seed prompt, kt−1.

• Reward rt: It is proportional to the TCAV score computed
at state st on action at, adjusted by a monotonically
increasing scaling factor ξt,k. As each seed concept
reaches the explainable state at different times, this factor
is introduced to scale the reward over time t for each
unique seed concept k. Since the g(.) is getting optimized
at each time step t. The scaling factor is updated as
ξt+1,k ← min

(
1,

ξt,k+1
T

)
, where T is total number of

RL steps. Therefore, the expected cumulative adjusted
reward is R(π) = E

[∑T
t=0 ξt · rt(st, at)

]
.

Our objective in deep RL is to learn a policy, π : s → a,
that takes actions (i.e., picking a seed prompt) leading to
explainable states (i.e., correct concept images) from proxy
states (i.e., somewhat correct concept images). We formally
define explainable state and proxy state as follow:

Definition 1. Explainable states: States that have a concept
score TSc,m ≥ η for a user-defined threshold η ∈ [0, 1] for
concept c and class m is defined as an explainable state.

Definition 2. Proxy states: States that have a concept score
TSc,m < η for the threshold η ∈ [0, 1] for concept c and class
m is defined as a proxy state.

In practice, we set η to a relatively large number, such as
0.7, to ensure that we look at highly meaningful concepts. In
DQN, in relation to Eq. 2, we learn a policy that iteratively
maximizes the Q(s, a) value by using the update rule,

Q∗(s, a) = Es′∼P (·|s,a)[ξtr(s, a) + γmax
a′∈A

Qtarget(s
′, a′)] (3)

C. Optimizing the States

At time t, the policy picks the seed prompt kt, which is then
used by the generative model, g(kt;wt), with model weights
w, to generate 2Z number of images. We randomly divide the
generated images into two groups: Xc1,t = {xc1,t,i}Zi=1 and
Xc2,t = {xc2,t,i}Zi=1. Let the TCAV scores of each group
be TSc1,m,t and TSc2,m,t. Since our objective is to find
concepts that generate a higher TCAV score, concept images
that have a higher score is preferred. Note that, unlike in
the classical preference optimization setting with a human to
rank, RLPO preference comes from the TCAV scores (e.g.,
TXc1,t ≻ TXc2,t). If the generative model at time t is not
capable of generating concepts that are in an explainable state,
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Fig. 3. Overview of the RLPO framework with its dynamic environment interaction. The RL policy selects actions (seed prompts) which generates concept
sets (G1, G2) scored through TCAV. Reward is calculated based on the scores obtained for both the sets. Simultaneously, best set is determined based on the
scores obtained, which is used to update the LoRA layer of the SD model.

max(TSc1,m,t, TSc2,m,t) ≤ η, we then perform preference
update on SD’s weights. Following Low-Rank Adaptation
(LoRA) [6]—a method that allows quick SD adaptation with
a few samples,— we only learn auxiliary weights a and b at
each time step, and update the weights as wt+1 ← wt + λab.

As the deep RL agent progresses over time, the states become
more relevant as it approaches explainable states, thus the same
action yields increasing rewards over time. To accommodate
this, with reference to the rewards defined in Section III-B, we
introduce a parameter ξ, which starts at 0.1 and incrementally
rises up to 1 as the preference threshold, η, is approached.
Different actions may result in different explainable states,
reflecting various high-level concepts inherent to f(·). Some
actions might take longer to reach an explainable state. As the
goal is to optimize all states to achieve a common target, DQN
progressively improves action selection to expedite reaching
these states. Thus, deep RL becomes relevant as it optimizes
over time to choose the actions that are most likely to reach
an explainable state more efficiently.

IV. EXPERIMENTS

To verify the effectiveness of our approach, we tested it
across multiple models and several classes. We considered two
CNN-based classifiers, GoogleNet [18] and InceptionV3 [19],
and two transformer-based classifiers, ViT [2] and Swin [10],
pre-trained on ImageNet dataset. Unless said otherwise, only
GoogleNet results are shown in the main paper. All other model
details and results are provided in Appendix H.

TABLE I
EXPLORATION GAP (EG) AND ODDS FOR DIFFERENT METHODS BASED ON

THE HUMAN SURVEY (APPENDIX I). THIS VERIFIES THAT RLPO CAN
GENERATE CONCEPTS THAT HUMAN CANNOT THINK OF.

Laymen Expert
(n=260) (n=240)

EG (Retrieval) 6.54% 10.45%
EG (Ours) 91.54% 65.45%
Odds (Retrieval) 14.29 8.57
Odds (Ours) 0.09 0.53

A. Concepts generated by RLPO
Objective of RLPO is to automatically generate concepts that

a human or a retrieval method cannot propose but the neural
network has indeed learned (i.e., gets activated). We observed
that the RLPO can generate diverse set of concepts that a
human would not typically think of but leads activations of the
DNN to trigger. To validate this hypothesis, we conducted a
survey to see if humans can think of these generated concepts
as important for the DNN to understand a certain class.

As detailed in Appendix I, during our human survey, we
presented a random class image followed by two concepts,
one generated by our method and another from a previous
retrieval-based method [4, 3]. While the choices were similar
in terms of XAI-score from both methods, we discovered
that most participants recognize retrieval-based concepts, and
only those with domain-specific knowledge could identify
generated concepts as important. As highlighted in Table I, high
Exploration Gap (EG) of our method indicates that most people
can only identify concepts from a small subset of what f(.)
learns during training. Intuitively, when we retrieve concepts
from the test class, they tend to be similar to the test images.
We further verify that the generated concepts have the following
properties.
Diverse representations per concept. We verify the diversity
(e.g., different types of stripes) of generated and retrieval-based
concepts by computing the vector similarity of the CLIP and
ResNET50 embeddings between Xc and Xm for different
classes. As highlighted in Table II, we observe that concepts
from retrieval-based methods tend to have high cosine similarity
with test images, making them less useful as abstract concepts
(e.g., to explain the zebra class, a patch of zebra as a concept
is less useful compared to stripes concept).
Multiple concepts per class. Since RLPO algorithm explores
various explainable states, we can obtain multiples concepts
(e.g., stripes, savanna) with varying level of importance. Fig. 4
shows the top three class-level concepts identified by our
method for the “zebra” class for the GoogleNet classifier. We
see that, each concept set has a different TCAV score associated



TABLE II
NOVEL CONCEPTS: TSc,m (TCAV SCORE), CS (COSINE SIMILARITY), ED (EUCLIDEAN DISTANCE), RCS, AND RED (CS AND ED WITH RESNET50

EMBEDDING). THIS INDICATES THAT RLPO CAN GENERATE A DIVERSE SET OF CONCEPTS THAT TRIGGERS THE NETWORK.

Methods Concepts TSc,m(↑) CS (↓) ED (↑) RCS (↓) RED (↑)

EAC [17] C 1.0 0.76± 0.03 7.21± 0.63 0.67± 0.14 6.34± 2.16

Lens [4]
C1 1.0 0.77± 0.02 7.17± 0.34 0.50± 0.18 9.70± 3.20
C2 1.0 0.72± 0.04 8.02± 0.87 0.42± 0.10 10.90± 2.80
C3 1.0 0.69± 0.05 8.45± 0.96 0.45± 0.05 11.03± 2.17

CRAFT [3]
C1 1.0 0.76± 0.04 7.37± 0.62 0.57± 0.16 8.80± 3.20
C2 1.0 0.72± 0.02 8.25± 0.39 0.50± 1.90 9.90± 3.40
C3 1.0 0.73± 0.04 7.98± 0.79 0.44± 0.07 10.80± 1.90

RLPO (Ours)
C1 1.0 0.52± 0.04 10.48± 0.50 0.04± 0.01 16.80± 1.40
C2 1.0 0.49± 0.02 10.65± 0.20 0.02± 0.02 17.20± 0.80
C3 1.0 0.49± 0.02 10.74± 0.30 0.03± 0.01 17.60± 4.40

Fig. 4. The figure shows the concepts generated by our method and where they are located in the input image (“zebra” class) for GoogleNet classifier. As
highlighted the “stripes” concept images are located near zebra, the “running” concept images, showing trees, highlight the background, and the “mud” concept
highlights the grass and soil in the input image. The concepts are ordered in their importance (TCAV score) with “stripes” being the highest and “mud” being
the lowest.

with them indicating their importance.

B. Are generated concepts correct?

After generating the concepts, next step is to identify what
those concepts signify. To locate where in the class images
generated concepts correspond, we made use of CLIPSeg [11],
a transformer-based segmentation model which takes in concept
images as prompts, Xc, and highlights in a test image, x ∈ Xm,
which part resembles the input prompt as a heat map. More
details on this is available in Appendix H3. As shown in Fig. 4,
class image on left highlights the top 3 identified concepts
by RLPO. We also compare the output generated by other
popular XAI techniques such as LIME and GradCam with
ones generated by RLPO.

After finding the relationship between generated concepts
and input images, we need to validate the importance of
the identified concepts. To that end, we applied c-deletion, a
commonly used validation method in XAI, to the class images
for each identified concept. We gradually deleted concept
segments based on the heat map obtained from ClipSeg. The
results for the c-deletion are shown in the Fig. 5. We see
the area under curve is the highest for the most important
concept “stripes” and the lowest for least important concept
“mud,” indicating the order of importance of each concept.
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Fig. 5. C-deletion. Removing concepts over time to measure the reliability.
The colored numbers indicate the area under the curve.

More examples on the c-deletion are in Appendix H4.

C. How are generated concepts useful to engineers?

To verify the usability of the generated concepts, we
conducted a human study with 19 ML engineers. We first
provided them the concept generated by our method for “zebra”
class and ask them to choose relevant concepts for GoogleNet to
classify a zebra without telling them that all shown images are
actual concepts. All the engineers selected the “stripes” concept
to be important while some also selected the “mud” concept.
But most missed the “running” concept. This indicates that
engineers cannot think of all the important concepts that gets the



neural network activated. In the next step, we showed engineers
the concept-explanation mapping on a random input image
(similar to Fig. 4) and asked them if the provided explanation
helped them understand the model better and if it provided new
insights. 94.7% of the engineers agreed that the explanation
helped in better understanding the neural network and 84.2%
agreed that it provided new insights. This result shows that
the new concepts discovered by our proposed method help
engineers discover new patterns that they did not imagine
before (More details in Appendix J).

We now demonstrate how engineers can use these newly
revealed information about concepts to improve the model.
As identified by RLPO, for Tiger class, the base GoogleNet
model gives equal importance to both foreground (highlighted
by concepts “orange black and white” and “orange and black”)
and background (highlighted by concepts “blurry”) in the input
(see Fig. 8 in Appendix H for example explanations). As shown
in Fig. 6, when we fine-tune the GoogleNet on images of Tiger-
related concepts, we see that the fine-tuned model now focuses
more on tiger than the background while maintaining a similar
accuracy (65.6%).

Fine-tuning based 
on concepts 

related to Tiger

Fig. 6. Usefulness of RLPO. Fine-tuning GoogleNet based on generated
concepts for the Tiger class.

V. LIMITATIONS AND CONCLUSIONS

Navigating an infinitely large concept space and generating
explainable concepts from textual inputs pose several chal-
lenges. We showed how deep RL can guide SD efficiently to
navigate this space. However, RLPO also suffers from some
limitations. The concepts that our algorithm generates can be
diverse as it tries to reveal the concepts inherent to the f(.),
making it less domain-specific (e.g., for a medical application,
there is a chance it might generate non-medical images if
the f(.) activations get excited for non-medical data). As
a future extension, we aim to input preferences from both
TCAV and domain experts while optimizing, making generated
explanations even more aligned to specific applications.

Despite the challenges, our results show how to leverage the
strengths of visual representations and adaptive learning to pro-
vide intuitive and effective solutions for understanding complex,

high-level concepts in neural networks. While our experiments
focus on visual classifiers, the core idea behind RLPO on
identifying meaningful and important concepts learned by a
model can be extended to robotic systems. In scenarios where
a robot takes unexpected actions, RLPO can offer a way to
surface the abstract visual concepts influencing those decisions,
allowing human operators to interpret, question, or correct
behaviors in the loop. As a future work, we aim to apply
RLPO to embodied agents and decision-making pipelines in
robotics, making concept-based feedback a practical component
in human-in-the-loop robot learning.
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APPENDIX

A. The Rationales Behind Design Choices

Rationale 1: Why concept generation is a better idea. If we use concept-based explanation the traditional way [7, 15],
then the end users need to manually guess what concepts to test for. Automatically retrieving the concept set by segmenting
test images [17] also results in a limited concept set. In contrast, a SOTA generative model can generate high quality images.

Rationale 2: Why a deep RL-controlled VLM fine-tuning for generating concepts is a better idea. “A picture is worth
a thousand words but words flow easier than paint.” As the saying goes, “a picture is worth a thousand words,” it is much
easier for people to explain and understand high-level concepts when images are used instead of language. For instance, we
need a long textual description such as “The circles are centered around a common point, with alternating red and white colors
creating a pattern” to describe a simple image of a dart board (i.e., Target Co. logo). Therefore, we keep our ultimate concept
representation as images. However, controlling a generative model from visual inputs is much harder. Since human language
can be used as a directed and easier way to seed our thought process, as the saying goes, “words flow easier than paint,” we
control the outcome by using text prompts. Since the vastness of the search space cannot be handled by most traditional search
strategies, we resort to a DQN for controlling text. Since simple text alone cannot generate complex, high-level visual concepts,
in each DQN update step, we use preference optimization to further guide the search process towards a more preferred outcome,
allowing the DQN to focus on states similar to the target. This approach improves our starting points for each DQN episode,
enabling more efficient search and incremental progress towards the desired target.

B. RLPO algorithm

Algorithm 2 presents the detailed version of the algorithm introduced in Section III, Algorithm 1.

Algorithm 2: DQN Algorithm with DPO and Adaptive Reward
Input : Set of test images, f(.)

1 Initialize Q-network Qθ(s, a) with random weights θ;
2 Initialize replay buffer D and adaptive parameter ξ ← 0.1;
3 for each episode do
4 for each time step t do
5 Observe state st and select action at based on Q (ϵ-greedy);
6 Execute at and generate 10 images, divided into two groups G1 and G2;
7 Evaluate TCAV scores TCAV 1 and TCAV 2;
8 if max(TCAV 1, TCAV 2) ≤ 0.7 then
9 Update policy to favor higher TCAV group and perform DPO;

10 Update ξ ← min(1, ξ + increment);

11 else
12 Set ξ ← 1;

13 Compute reward rt = ξ ·max(TCAV 1, TCAV 2);
14 Store transition (st, at, rt, st+1) in D;
15 Sample a mini-batch from D;
16 for each sampled transition (si, ai, ri, si+1) do
17 Compute target yi = ri + γmaxa′ Qθ′(si+1, a

′);

18 Compute loss L(θ) = 1
N

∑N
i=1(yi −Qθ(si, ai))

2;
19 Perform a gradient descent step to update θ;
20 Periodically update target network: θ′ ← τθ + (1− τ)θ′;

Output : Set of concept images

C. Ablation study: Search Strategies (Why deep RL?)

We chose DQN as our RL algorithm because of its ability to effectiveness traverse through discrete action space [12] (20
unique seed prompts). We assess the effectiveness of RL by disabling the preference optimization step. As shown in Table III,
on the GoogleNet classifier, compared to ϵ-greedy methods, the RL setup exhibits higher entropy, average normalized count
(ANC), and inverse coefficient of variance (ICV), indicating RL’s ability to efficiently explore across diverse actions.



TABLE III
SEARCH STRATEGY ABLATION. WE SEE THAT RL, COMPARED TO ϵ-GREEDY SEARCH, IS THE BEST STRATEGY TO EXPLORE THE SEARCH SPACE WITH HIGH

ENTROPY, AVERAGE NORMALIZED COUNT (ANC) PER ACTION, AND INVERSE COEFFICIENT OF VARIANCE (ICV).

Method Entropy (↑) ANC (↑) ICV (↑)

RL (Ours) 2.80 0.43 2.17
0.25 Greedy 2.40 0.21 1.04
0.5 Greedy 1.95 0.15 0.59
0.75 Greedy 1.85 0.15 0.56
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Fig. 7. Seed prompt pipeline

D. Preprocessing for generating the action space

Steps not discussed in Section III-A.
As shown in Fig. 7, each patch from the test images is passed to the VQA model to extract relevant and useful information

about the corresponding class. In this study, we choose BLIP [9] as our VAQ model. We posed a set of targeted questions to
the VQA model, aiming to gain insights into the class-specific features represented in the patches. The questions are designed
to probe various aspects of the image patches, helping the model focus on class-defining attributes.

1) “What is the pattern in the image?”
2) “What are the colors in the image?”
3) “What is the background color of the image?”
4) “What is in the background of the image?”
5) “What is the primary texture in the image?”
6) “What is the secondary texture in the image?”
7) “What is the shape of the image?”
We then remove stop words and duplicates from the generated responses using lemmantizing and perform a cross-similarity

check using CLIP between all the unique words and further filtered words which are more than 95% similar. To further select
most relevant keywords to the class images, we perform a VLM check using class images and the extracted keyword to get the
softmax score of how much the keyword and image are related. This score is then averaged over all the class images and this
average is use to sort the keywords. Now, from the sorted keywords, we select top 20 keywords as our RL action space. The
cross-similarity and VLM check are inspired from [23] where they used a similar filtering setup to remove potentially useless
concepts.

E. Preference optimization update for state space

Steps not discussed in Section III-C.



The candidate concepts serve as the initial states for the RL agent. From these initial states, the agent takes actions
a ∈ Keywords that leads to multiple subsequent possible states using g(.). These states are then grouped, and the group’s
sensitivity is compared against Inputs of f(.) using TCAV scores. A higher TCAV score suggests higher sensitivity, indicating
that the group is more aligned with f(.)’s inputs.

We employ preference optimization over the grouped states to guide states towards explainable concepts. To prevent the
model from skipping over explainable states and directly reaching the input domain, we introduce a threshold that limits the
application of preference optimization at each step as shown in equation 4.

Given two groups of samples G1 and G2 with their average TCAV scores TCAV 1 and TCAV 2 :

if max(TCAV 1, TCAV 2) ≤ 0.7, update π to favor the group with higher TCAV . (4)

To optimize g(.) to find better proxies, for each step in the environment we utilized average TCAV scores TCAV 1 and
TCAV 2 from G1 and G2 to decide between preferred and unpreferred concepts. Lets say TCAV 1 ≻ TCAV 2, than we
optimize g(.) over the sample S defined as S = {(a, xg1

0 , xg2
0 )}, where xg1

0 and xg2
0 are the sample points from the groups on

action a. We optimize g(.) using objective 5 to get a new optimzed g′(.) [21].

L(θ) =− E(xg1
0 ,xg2

0 )∼S,t∼U(0,T ),xg1
t ∼q(xg1

t |xg1
0 ),xg2

t ∼q(xg2
t |xg2

0 ) log σ (−βTω(λt)(
∥ϵG1 − ϵg′(.)(x

G1
t , t)∥22 − ∥ϵG1 − ϵg(.)(x

G1
t , t)∥22

−
(
∥ϵG2 − ϵg′(.)(x

G2
t , t)∥22 − ∥ϵG2 − ϵg(.)(x

G2
t , t)∥22

)))
(5)

where x∗
t = αtx

∗
0 + σtϵ

∗, ϵ∗ ∼ N (0, I) is drawn from q(x∗
t |x∗

0). λt = α2
t /σ

2
t is the signal-to-noise ratio, and ω(λt) is

weighting function (constant in practice).

F. TCAV setting for different models

We tested different models on different layers and classes and the summary of our setting across different models is described
in table IV.

TABLE IV
TCAV SETTING ACROSS DIFFERENT MODELS

Models Layers ImageNet Classes

GoogleNet inception4e layer Goldfish, Tiger, Zebra & Police Van
InceptionV3 Mixed_7c layer Goldfish, Tiger, Lionfish & Basketball

Vision Transformer (ViT) heads layer Goldfish, Golden Retriever, Tiger & Cab
Swin Transformer head layer Goldfish, Jay, Siberian husky & Tiger

G. Computing resources

The experiments were conducted on a system equipped with an NVIDIA GeForce RTX 4090 GPU, 24.56 GB of memory,
and running CUDA 12.2. The system also featured a 13th Gen Intel Core i9-13900KF CPU with 32 logical CPUs and 24
cores, supported by 64 GB of RAM. This setup is optimized for high-throughput computational tasks but the experiments are
compatible with lower-specification systems.

H. Additional results and analysis

To validate our method for its ability to generate concepts, we tested it with different models and classes. We started it on
traditional models, GoogleNet and InceptionV3, and then extended it to transformer-based models, Vision Transformer (ViT)
and Swin Transformer, pre-trained on ILSRVC2012 data set (ImageNet) [8]. We show additional plot in various classes shown
in Fig 8,9,10,11,12.

1) Cumulative rewards: The cumulative rewards during training for GoogleNet and InceptionV3 is shown in Fig. 13. For
ViT and Swin Transformer it is shown in Fig. 14. This figure illustrates the steady accumulation of rewards over time as they
interact with the reinforcement learning environment. All models demonstrate a steady increase in cumulative rewards, the
classes with higher reward peak reaches its explinable state faster.

2) Action Selection Optimization During RLPO Training: As shown in Fig. 15, during training with multiple combinations
of seed prompts, we observe that the RL agent initially explores various action combinations. However, as training progresses,
individual actions become more optimized due to preference optimization (PO). This leads the agent to prefer fewer action
combinations, since just choosing one or two actions makes the agent reach an explainable state.



Fig. 8. Explanation plot of Tiger classification by GoogleNet from RLPO.
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Fig. 9. Explanation plot of Cab classification by ViT from RLPO.
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'basket' concept (0.600)

Fig. 10. Explanation plot of Basketball classification by InceptionV3 from RLPO.

3) Concept heatmap: To determine the relationship between generated concepts and test images, we made use of CLIPSeg
transformer model [11]. We passed generated concepts as visual prompts and test images as query images into the model and it
returns a pixel-level heatmap of the probability of visual prompt in the query image. Fig. 16, 17 showcases some examples on
concept heatmap indicating the presence of the concept in the image.

4) C-deletion: The central idea behind c-deletion in explainability is to identify and remove parts of the input context that
are not crucial for the decision-making process, allowing for clearer insights into how the model arrives at its predictions or
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'ship' concept (1.000)

'bumpy' concept (0.800)

'feather' concept (0.800)

Fig. 11. Explanation plot of Lionfish classification by InceptionV3 from RLPO.
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Fig. 12. Explanation plot of Golden Retriever classification by ViT from RLPO.

actions.
C-deletion evaluations assesses the impact of removing certain contextual inputs (features, variables, or states) on a model’s

performance as shown in Fig. 20.

I. Human survey: Understanding human capabilites

The survey involved 50 participants, each of whom was shown 10 class images along with two concept options as shown in
Fig. 21: one derived from a retrieval-based method and the other generated using RLPO. The participants were divided into
Laymen and Experts.

1) Expert: Computer science graduates who are familiar with the concept of explainability and have a working knowledge of
AI or machine learning systems.

2) Laymen: Individuals without expertise in computer science, AI, or explainability, representing the general public’s
perspective.

J. Human study: Usability

We conducted a human study to measure the usefulness of the provided explanation. The study involved 19 ML engineers.
Fig. 22 shows the survey used while conducting human study to measure usability.
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Fig. 13. Cumulative rewards on traditional models.
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Fig. 14. Cumulative rewards on transformer models.
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Fig. 16. Van class with “white blue and yellow”, Lion fish class with “zebra” seed prompt.

Fig. 17. Basketball class with “basket” seed prompt, Tiger class with “orange black and white” seed prompt.

Fig. 18. The figure shows c-deletion taking place for different images from “tiger” class over time for “orange black and white” seed concept.

Fig. 19. The figure shows c-deletion taking place for different images from “cab” class over time for “yellow and white” seed concept.
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Fig. 20. C-deletion. Removing concepts over time to measure the reliability. The colored numbers indicate the area under the curve (the lower the better).

Fig. 21. A screenshot from our human survey with instructions and a sample question.



Fig. 22. Screenshots from our human survey with sample questions to validate usability.
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