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Fig. 1: CRESTE learns a perceptual encoder1,2 and reward function3 to predict structured bird’s eye view (BEV) feature
and reward maps for navigation. Our model inherits generalization and robustness from visual foundation models and learns
expert-aligned rewards using our counterfactual-guided learning framework. We integrate CRESTE in a modular navigation
system that uses coarse GPS guidance and rewards to reach navigation goals safely.

Abstract— We introduce CRESTE, a scalable learning-based
mapless navigation framework to address the open-world
generalization and robustness challenges of outdoor urban
navigation. Key to achieving this is learning perceptual rep-
resentations that generalize to open-set factors (e.g. novel
semantic classes, terrains, dynamic entities) and inferring
expert-aligned navigation costs from limited demonstrations.
CRESTE addresses both these issues, introducing 1) a visual
foundation model (VFM) distillation objective for learning
open-set structured bird’s-eye-view perceptual representations,
and 2) counterfactual inverse reinforcement learning (IRL),
a novel active learning formulation that uses counterfactual
trajectory demonstrations to reason about the most important
cues when inferring navigation costs. We evaluate CRESTE
on the task of kilometer-scale mapless navigation in a variety
of city, offroad, and residential environments and find that it
outperforms all state-of-the-art approaches with 70% fewer hu-
man interventions, including a 2-kilometer mission in an unseen
environment with just 1 intervention; showcasing its robustness
and effectiveness for long-horizon mapless navigation. Videos,
code, and additional materials can be found on the project
page: https://amrl.cs.utexas.edu/creste.

I. INTRODUCTION
Mapless navigation is the task of reaching user-specified

goals without high-definition (HD) maps and precise nav-
igation waypoints. Mapless approaches plan routes using
egocentric sensor observations (e.g. RGB images, point
clouds, GPS), coarse waypoints from public routing ser-
vices, and satellite imagery. These solutions demonstrate
promise as a scalable alternative to conventional map-centric
approaches: enabling generalization to unforeseen factors
(e.g. curb ramps and foliage) and dynamic entities (e.g.
pedestrians and strollers) while reducing map maintenance
overhead and reliance on pre-defined routes.

Traditional geometric-only mapless solutions [1, 2] exhibit
robust generalization when it is only necessary to consider
costs for geometric factors like static obstacles. However,
open-world navigation demands perception systems that per-
ceive an open set of factors unknown apriori, ranging from
terrain preferences (grass vs. concrete) to semantic cues
(crosswalks and crossing signs). Furthermore, it requires the
ability to identify the most salient features in the scene, and
how they influence the choice of paths.

Learning-based approaches are a scalable alternative that
considers factors beyond geometry, but must overcome
data scarcity, robustness, and generalization challenges to
achieve similar reliability. These approaches broadly con-
sist of single-factor perception, hand-curated multi-factor
perception, end-to-end learning, and zero-shot pre-trained
large language model (LLM)/visual language model (VLM)
transfer. While single-factor [3, 4, 2] and multi-factor [5, 6]
methods learn representations that consider relevant naviga-
tion factors (e.g. geometry, terrain, semantics), they rely on
a hand-curated list of semantic classes and terrains that limit
generalization to unseen classes. End-to-end methods [7,
8, 9] alleviate this by jointly learning the representation
and policy from expert demonstrations, but are prone to
overfitting without large-scale robot datasets. While recent
works [10, 11] demonstrate that pre-trained LLMs and VLMs
can reason about expert-aligned behavior without large-scale
robot datasets, we empirically demonstrate that they are
poorly attuned to urban navigation, leading to brittle zero-
shot transfer in complex scenes.

We address the aforementioned limitations with CRESTE,
Counterfactuals for Reward Enhancement with Struc-
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tured Embeddings, a novel approach that learns open-set
representations and navigation costs/rewards for mapless ur-
ban navigation. To learn open-set representations, CRESTE
combines prior work on bird’s eye view (BEV) representation
learning [5] and visual foundation models (VFMs) [12, 13]
to learn BEV map representations with inherited real-world
robustness and open-set semantic knowledge. We unify priors
from multiple foundation models by distilling image features
from Dinov2 [12] and refining these features in BEV using
SAM2 [13] instance labels. CRESTE infers expert-aligned
navigation costs without large-scale demonstrations by lever-
aging counterfactuals to guide learning, where counterfactu-
als hold all other variables constant except for the path taken
from the start to the end goal. Unlike conventional preference
learning, our proposed counterfactual inverse reinforcement
learning (IRL) objective explicitly minimizes rewards along
paths that exhibit undesirable behavior (e.g. veering off
crosswalks, driving off curb ramps, etc.), enabling operators
to correct robot behavior by providing offline counterfactual
feedback. We summarize the main contributions of our work
as follows:

• Representation Learning Through Model Distilla-
tion. A new model architecture and distillation objective
for distilling navigation priors from visual foundation
models to a lightweight image to BEV map backbone.

• Counterfactually Aligned Rewards. An active learn-
ing framework and counterfactual IRL formulation
for reward alignment using counterfactual and expert
demonstrations.

We demonstrate our approach’s effectiveness through real-
world kilometer-scale navigation experiments in urban en-
vironments with off-road terrain, elevated walkways, side-
walks, intersections, and other challenging conditions. In
total, we evaluate in 6 distinct seen and unseen geographic ar-
eas and significantly outperform existing state-of-the-art imi-
tation learning, inverse reinforcement learning, and heuristic-
based methods on the task of mapless navigation.

II. APPROACH
CRESTE is a modular approach with two key components

that can be trained end-to-end: 1) A perceptual encoder
!(orgb, t, odepth, t) that takes the robot’s current RGB and
sparse depth observation and predicts a completed depth
image ydepth, t and structured BEV feature map ybev, t; 2)
A reward function rω(ybev, t) that takes ybev, t and outputs
a BEV scalar reward map yreward, t. In the remainder of
this section, we describe the following: 1) Sec. II-A - The
CRESTE model architecture, 2) Sec. II-B - The CRESTE
training procedure, where Sec. II-B.1 presents our VFM
distillation objective for ! and Sec. II-B.2 presents our active
reward learning framework for learning rω from expert and
counterfactual demonstrations.

A. CRESTE Model Architecture
Perception Encoder !. Our 25.5M parameter perceptual

encoder ! draws inspiration from the TerrainNet [5] back-
bone, which trains a RGB-D encoder frgbd to predict a latent

feature map zrgbd using an EfficientNet-B0 [15] encoder and
a completed depth map ydepth using a depth completion head
fdepth(zrgbd). Like TerrainNet, we train a lift-splat module
fsplat(zrgbd, ydepth) to lift latent features to 3D and “splat”
them to an unstructured BEV feature map zbev, splat. Finally,
we pass zbev, splat to a BEV inpainting backbone fbev that uses
a shared U-Net [16] encoder and separate decoders to predict
a structured feature map consisting of separate semantic and
elevation layers.

Building on TerrainNet, we make two key architec-
tural modifications. Our first modification, semantic decoder
fsemantic, promotes learning semantic and geometric-aware
features by regressing image features from Dinov2 [12] using
latent image features zrgbd. This design is analogous to model
distillation [17] and allows our RGB-D encoder frgbd to
inherit properties from VFMs like robustness to perceptual
aliasing and open-set semantic understanding.

Our second modification stems from the observation that
Dinov2 features alone lack the entity understanding needed
to backproject and inpaint features in heavily occluded urban
scenes with noisy depth predictions. Thus, we supplement
fbev with two panoptic map decoders fbev,static and fbev,dynamic
to ensure that predicted BEV feature maps ybev are con-
sistent with BEV instance maps from SegmentAnythingv2
(SAM2) [13]. We use Supervised Contrastive Loss [18] to
optimize ybev such that features belonging to the same in-
stance are closer in embedding space than features belonging
to different instances. Combined with fsemantic, our modi-
fications synergistically unify the strengths of Dinov2 and
SAM2 to learn open-set semantic, geometric, and instance-
aware representations grounded in the local planning horizon.
Altogether, our structured BEV feature map ybev consists of
three layers stacked along the channel dimension: 1) Static
panoptic feature map ybev, static, 2) Dynamic panoptic feature
map ybev, dynamic, and 3) Elevation map ybev, elev.

Reward Function rω. To ensure our reward function
enforces spatial invariance and considers multi-scale features,
we implement rω using a 0.5M parameter Multi-Scale Fully
Convolutional Network (MS FCN) first used by Wulfmeier
et al. [19]. We supervise rω using our counterfactual IRL
loss, which we describe along with our training procedure
for ! in the next section.

B. CRESTE Training Procedure

To train CRESTE, we first optimize perceptual encoder !
and freeze the parameters before training rω using our active
reward learning framework with counterfactuals.

1) Training the Perceptual Encoder !: We propose a
distillation label generation module that leverages VFMs
to generate five training labels for supervising !. Using
sequential SE(3) robot poses and synchronized RGB–point
cloud pairs (orgb, 1:t, ocloud, 1:t), we generate semantic feature
maps ŷsemantic, completed depth labels ŷdepth, BEV map labels
for static/dynamic entities (ŷbev, static, ŷbev, dynamic), and BEV
elevation map labels ŷbev, elev. For more information on label
generation, please see Appendix Sec. VI-A.



Fig. 2: Model architecture and training procedure for the CRESTE perceptual encoder !. Using a RGB and sparse depth
image, frgbd extracts image features zrgbd and performs depth completion. Next, we lift and splat zrgbd to an unstructured BEV
feature map before predicting continuous static panoptic, dynamic panoptic, and elevation features. Finally, we stack the
predicted features to construct a structured BEV feature map for our learned reward function. We supervise ! using semantic
feature maps, completed depth, and BEV map labels generated by our SegmentAnythingv2 [14] and Dinov2 [12]-powered
distillation label generator. We define the dimensions for important feature maps in the Feature Dimension Legend on the
bottom right.

Fig. 3: Framework for Active Reward Learning with Counterfactuals. Before reward learning, we train and freeze the
perceptual encoder ! and use the output BEV feature map ybev with rω to predict BEV reward maps yreward. In phase I, we
train rω using our counterfactual IRL objective LIRL using only expert demonstrations ”E . In phase II, we plan goal-reaching
paths using yreward and identify samples that align poorly with human preferences. We generate alternate trajectories for these
samples and query the operator to select counterfactual demonstrations ”S using orgb for context. In phase III, we retrain rω
using LIRL, this time with ”E and ”S . We repeat phases II and III to iteratively improve rω until it is aligned with human
preferences.

RGB-D Encoder frgbd. We first train frgbd until conver-
gence via backpropagation from fsemantic and fdepth. Specif-
ically, we supervise fsemantic via an L2/MSE loss and fdepth
using a cross-entropy classification loss LCE , where ŷdepth
is uniformly discretized into bins. Altogether the training
objective for the RGB-D backbone is:

Lrgbd = ω1l2(ysemantic, ŷsemantic) + ω2LCE(ydepth, ŷdepth)
(1)

where ω1 and ω2 are tunable hyperparameters.
BEV Inpainting Backbone fbev. We warm-start fbev by

freezing frgbd and jointly training for a few epochs before

unfreezing frgbd and training end-to-end. We train fbev, static
and fbev, dynamic with Supervised Contrastive Loss [18]
(Lcontrastive), optimizing the embedding space such that fea-
tures of the same entity remain close while repelling those
from different entities. This is key to learning continuous
feature maps from BEV instance map labels ŷbev, static and
ŷbev, dynamic. We train fbev, elev to predict the elevation ŷbev, elev
using l1 regression loss. Our full training objective for fbev
is:

Lbev = ε1Lcontrastive(ystatic, ŷstatic)+

ε2Lcontrastive(ydynamic, ŷdynamic) + ε3l1(yelev, ŷelev)
(2)



Fig. 4: Satellite image of testing locations for short horizon mapless navigation experiments. We evaluate baselines across 2
seen (green) and 4 unseen (red) urban locations. Our testing locations consist of residential neighborhoods, urban shopping
centers, urban parks, and offroad trails. In each location, each baseline must start from an endpoint on the annotated blue
trajectory and navigate to the opposite end of the trajectory. We denote each location’s ID with a numerical superscript.

where ε1, ε2, and ε3 are tunable hyperparameters. For spe-
cific hyperparameter settings, please refer to the Appendix.

2) Training the Reward Function rω: We train rω using
our three-phase active reward learning framework and coun-
terfactual IRL objective. We summarize the three phases
next and describe the counterfactual annotation procedure
and counterfactual IRL in Appendix Sec. II-B.3.

In Phase I (Warmstart), we train rω using only expert
demonstrations to obtain a base policy. In Phase II (Coun-
terfactual Generation), we use Hybrid A* [20] to plan a
path from the same start/goal as the expert using the learned
rewards. We compute the Hausdorff distance between the
planned path and expert, selecting samples that exceed a
distance threshold as candidates for counterfactual labeling.
For candidate samples, we replay and accumulate the recent
history of expert observations, sample alternate trajectories
from the start/end goal of the expert, and ask a human to
select alternate trajectories that exhibit undesirable behavior
(e.g. veering off crosswalks, driving into curbs) or violate
preferences (e.g. driving on sidewalk versus grass). In Phase
III (Reward Alignment), we retrain rω using LIRL with expert
and counterfactual demonstrations. We repeat phases II and
III using the rω to achieve expert alignment.

3) Counterfactual IRL Objective: We derive our counter-
factual IRL objective in Eq. 3 from the Bradley-Terry model
of preferences, where ϑE(rω), ϑS(rω), and ϑε(rω) are the
visitation distributions induced by the expert, counterfactual,
and learned policies and rω is the predicted reward.

LIRL = ϑE(s, a)→ (ωϑS(s, a)+(1→ω)Eε[ϑ
ε(s, a)])rω (3)

By enforcing non-trivial rewards with gradient regulariza-
tion [21], the above objective learns a reward function such
that the difference between the expert’s return and agent
policy’s return is minimized while ensuring suboptimal coun-
terfactuals have a low return. This can be seen as a special
case of preference learning [22, 23], as counterfactuals are
a more specific type of feedback than general preferences,
which can be between any two trajectories. We provide the
full derivation and analysis in the Appendix Sec. VI-B.

To obtain counterfactual annotations, we uniformly sample
a handful of ”control” states along the expert trajectory
”E
t , excluding the start and goal states. Then, we randomly

perturb these control states before planning a kinematically
feasible path from the start and goal states such that it reaches

all of the perturbed control states. Practically, we implement
this using Hybrid A* [20] - however, any kinematic planner
will suffice. We use the counterfactual annotation tool shown
in Fig. 6 to generate a handful of alternate trajectories in this
manner and annotate the suboptimal trajectories given orgb, t
and odepth, t. Our counterfactual annotation criteria focuses on
identifying universally undesirable navigation behavior (e.g.
driving into obstacles, onto the road) and soft operator pref-
erences (e.g. driving on undesirable terrains, close proximity
to sharp curb cuts). In total, we spend roughly two hours
annotating 600 samples with 2-3 counterfactuals per sample,
comprising 3% of all frames in the training dataset. Using
these annotations in Counterfactual IRL LIRL, we obtain our
full learning objective for ! and rω:

LCRESTE = Lrgbd + Lbev + LIRL (4)

III. EXPERIMENTS

We investigate the importance of our contributions and
overall performance on the task of mapless urban navigation
by answering the following questions.

• (Q1) How well does CRESTE generalize to unseen
urban environments for mapless urban navigation?

• (Q2) How important are structured BEV perceptual
representations for downstream policy learning?

• (Q3) How much do counterfactual demonstrations im-
prove learned policies in challenging urban scenes?

• (Q4) How well does CRESTE perform long horizon
mapless urban navigation compared to other SOTA
approaches?

We conduct all experiments using a Clearpath Jackal
mobile robot shown in Fig. 7. We outfit the robot with a
synchronized RGB camera and LiDAR, and obtain coarse
GPS localization and heading from a cellular smartphone.
We conduct our experiments in six unique areas shown
in Fig. 4 on the task of mapless navigation. We evaluate
each approach using the average subgoal completion time
(AST), percentage of subgoals reached (%S), and number of
interventions per 100m traversed (NIR).

Baselines. We compare CRESTE against 4 baselines,
which we describe in detail in Appendix Sec. VI-C and
summarize next: 1) Geometric Only, 2) (PACER+G [3]) - a
multi-factor terrain and geometric aware model, 3) ViNT [8]
- a robot navigation foundation model, and 4) PIVOT [11] - a



Fig. 5: Satellite image of our 2 kilometer long-horizon testing area, with examples with front view RGB image observations
and CRESTE’s predicted BEV costmap (converted from the predicted BEV reward map). We annotate successful examples
in green with a brief description of the situation. We annotate unsuccessful examples in red, present the observation right
before the intervention, and provide a brief description of the cause of failure.

pre-trained VLM-based navigation model. We train/finetune
methods 2 and 3 on the same dataset as CRESTE, which
consists of 3 hours of expert demonstrations. Addition-
ally, we conduct ablations to understand the importance
of each contribution: 1) CRESTE-cfs-st, our model trained
without counterfactuals and structured representations, 2)
CRESTE-cfs, our model trained without counterfactuals, and
3) CRESTE-st, our model trained without structured repre-
sentations. We describe additional model implementation and
training details in Appendix Sec. VI-C.

Analysis. Across all experiments, CRESTE outperforms
existing methods, achieving significantly fewer interventions
in seen and unseen environments, including 1.9km mission
traversal with just a single intervention. We provide qualita-
tive analysis of each method’s failures in Appendix Sec. VI-
D. Quantitatively, PACER+G, the next best approach, re-
quires two times more interventions than CRESTE in seen
environments and five times more interventions in unseen
environments. Furthermore, we find that PIVOT, our VLM-
based navigation baseline, performs poorly relative to other
methods, corroborating our claim that VLMs and LLMs
are not well attuned for urban navigation despite containing
internet-scale priors. We hypothesize this is because navi-
gation requires identifying which priors are most important
for navigation, a task seen rarely by VLMs and LLMs
during pre-training. Notably, we achieve an intervention-
free traversal in one unseen environment (Hemphill Park),
a residential park with diverse terrains, narrow curb gaps,
and crosswalk markings. From these findings, we conclude
that CRESTE is remarkably more generalizable for mapless

urban navigation than existing approaches.
Ablating our proposed contributions, we observe an in-

tervention reduction of 41% with structured representations
and 70% reduction with counterfactuals. We hypothesize that
structured representations improve performance by encoding
higher-level features that are more generalizable and easier
for policies to reason about compared to lower-level features
that capture less generalizable high-frequency information.
Our counterfactual ablations distill the same VFM features,
thus vindicating our claim that even with sufficiently infor-
mative perceptual representations, it is important to leverage
our counterfactual-based objective to reason about the most
salient features for navigation. We conclude that our contri-
butions in question are highly effective, enabling CRESTE
to perform mapless urban navigation and robustly generalize
to diverse environments beyond the training data.

IV. LIMITATIONS AND FUTURE WORK

While CRESTE inherits some viewpoint-invariance from
VFMs, it does not allow reward maps to be conditioned on
embodiment-specific constraints, such as the traversability
differences between quadrupeds and wheeled robots. An
interesting future direction is applying existing research on
cross-embodiment conditioning [8] to our architecture. Fur-
thermore, CRESTE infers reward maps using observations
from a single timestep, limiting multi-step horizon reasoning
tasks, such as recovering from dead ends or negotiating
paths in constricted environments. Extending CRESTE with
memory and counterfactual IRL for reasoning about object
dynamics are promising directions for addressing these is-
sues. In addition, reward learning with counterfactuals is



In Distribution Out of Distribution
Location Sherlock North Woolridge Square Sherlock South Trader Joes Hemphill Park
Method AST → %S↑ NIR → AST → %S↑ NIR → AST → %S↑ NIR → AST → %S↑ NIR → AST → %S↑ NIR →
Geometric Only 17.64 61.60 11.21 18.56 86.36 9.50 15.56 92.50 7.80 15.22 94.74 12.05 14.21 95.00 13.21
PACER+G [3] 25.79 96.15 9.42 26.51 90.90 8.83 22.11 95.00 7.67 24.38 87.14 17.93 23.94 92.85 9.47
ViNT [8] 20.38 65.51 10.36 17.85 90.36 7.94 17.06 92.30 7.19 22.10 84.21 18.36 23.92 95.00 10.96
PIVOT [11] 46.56 83.33 26.03 57.36 84.11 20.22 45.41 75.00 21.91 41.77 74.44 40.67 33.85 85.00 28.36
CRESTE - cfs - st 21.26 96.15 12.99 20.53 91.66 9.79 21.13 92.80 5.65 23.17 93.75 14.87 26.85 94.11 11.11
CRESTE - cfs 25.86 96.29 9.20 19.84 90.90 6.12 13.27 92.30 2.41 25.39 91.66 10.49 28.43 83.33 8.57
CRESTE - st 19.09 96.29 6.10 17.80 92.90 3.03 12.88 94.65 2.04 22.01 92.85 7.83 16.32 93.42 2.16
CRESTE (ours) 14.01 96.60 4.60 14.70 100.0 0.00 12.60 95.23 0.86 15.28 95.65 3.73 15.42 100.0 0.00

TABLE I: Quantitative evaluation comparing CRESTE against existing navigation baselines for short horizon mapless
navigation experiments. We bold the best performing method for each metric in each location, and annotate each metric
with an up or down arrow to indicate if higher or lower numbers are better.

Location Mueller Loop
Method AST → %S↑ NIR → Dist. (m) ↑ Total Int. →
PACER+G [3] 15.8 61.53 3.56 1345.07 48
CRESTE (ours) 12.94 99.45 0.052 1919.44 1

TABLE II: Quantitative evaluation for 1.9km long horizon
mapless navigation experiments. We bold the best performing
method for each metric in each location, and annotate each
metric with an up or down arrow to indicate if higher or
lower numbers are better.

a potential bottleneck, as it requires humans for counter-
factual labeling. Automated counterfactual generation with
VLMs/LLMs is another promising direction to further im-
prove scalability. Lastly, our counterfactual IRL objective can
further be extended to incorporate preferences following the
same derivation from the ranking perspective. This would
not only allow the reward to reason about what paths are
best but allow is to learn how to discriminate between two
suboptimal paths should the need arise.

V. CONCLUSION

In this paper, we introduce Counterfactuals for Reward En-
hancement with Structured Embeddings (CRESTE), a scal-
able framework for learning representations and policies that
address the open-set generalization and robustness challenges
of open-world mapless navigation. CRESTE learns robust,
generalizable perceptual representations with internet-scale
semantic, geometric, and entity priors by distilling features
from multiple visual foundation models. We demonstrate
that our perceptual representation encodes a sufficient set
of factors for urban navigation, and introduce a novel
counterfactual-based loss and active learning framework that
teaches policies to hone in on the most important factors and
infer how they influence fine-grained navigation behavior.
These contributions culminate to form CRESTE, a local
path planning module that significantly outperforms state-
of-the-art alternatives on the task of long-horizon mapless
urban navigation. Through kilometer-scale real-world robot
experiments, we demonstrate our approach’s effectiveness,
gracefully navigating an unseen 2 kilometer urban environ-
ment with only a handful of interventions.
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VI. APPENDIX
In this section, we provide additional implementation

details on our perceptual encoder ! and label generation
procedure in Sec. VI-A, Counterfactual IRL and counter-
factual annotation tool in Sec. VI-B, model training de-



tails Sec. VI-C, and qualitative analysis comparing each
baseline in Sec. VI-D.

A. Perceptual Encoder Implementation Details
Distillation Label Generator. Fig. 2 visually depicts the

inputs and outputs for our label generator. Using sequential
SE(3) robot poses and synchronized RGB–point cloud pairs
(orgb, 1:t, ocloud, 1:t), our Distillation Label Generator produces
five training labels for supervising !. Below, we detail the
label generation procedure for a single timestep t, separating
it into two parts: (i) labels supervising frgbd, and (ii) labels
supervising fbev.

i) Generating Training Labels for the RGB-D Encoder
frgbd. We generate ŷsemantic by passing orgb, t through a
frozen Dinov2 encoder and bilinearly interpolating the spatial
dimension of our output feature map to match the spatial
resolution of ysemantic. We generate ŷdepth by projecting ocloud, t
to the image and applying bilateral filtering [24] for edge-
aware inpainting, producing a dense depth map that respects
object boundaries.

ii) Generating Training Labels for the BEV Inpainting
Backbone fbev. To generate ŷbev, dynamic, we prompt SAM2
with bounding box detections from a set of commonly
encountered dynamic categories (e.g. vehicles, pedestrians)
to obtain dynamic entity labels. We follow the approach
in Osep. et al. [25], backprojecting dynamic labels to 3D
using the corresponding point cloud ocloud, t and clustering the
points at multiple density thresholds using DBSCAN [26].
We retain the DBSCAN clusters that exceed a minimum
intersection-over-union (IoU) overlap with the entity-labeled
clusters and project the matched points to the dynamic entity
BEV map.

To generate ŷbev, static, we first obtain static entity labels
by prompting SAM2 with a grid of query points (generating
dynamic entity labels via bounding box queries as before),
mask out overlapping regions between grid-queried and
dynamic labels to isolate the static masks in each frame, and
then apply an iterative greedy merging strategy that fuses
overlapping masks (above an IoU threshold) across con-
secutive frames — treating unmatched IDs as new entities.
Finally, we project and accumulate these entity-consistent
multi-frame labels in BEV using known robot poses to
produce the final static entity BEV map.

To generate ŷbev, elev, we accumulate static entity-labeled
3D points across sequential frames using robot poses (gen-
erating static entity labels as before), assign each 3D point
to a grid cell, and compute each cell’s minimum elevation
by averaging the N lowest 3D points that fall into that cell.

B. Counterfactual IRL Details
Counterfactual IRL Derivation LIRL. IRL methods [27,

28] allow for learning reward functions rω, parameterized
by ϖ, given expert demonstrations. However, they provide
no mechanism to incorporate suboptimal trajectories. Sub-
optimal trajectories are easy to obtain and enable a data
flywheel for navigation; the BEV observations obtained from
expert runs can simply be relabeled offline with suboptimal

Fig. 6: Counterfactual annotation tool used for training the
reward function rω. We provide the front-view RGB image
and BEV RGB image to the human annotator for context.
We highlight the counterfactuals in red and acceptable tra-
jectories in green.
or unsafe trajectories without any more environmental inter-
actions. Motivated by this idea, we derive LIRL, a general
and principled way to learn from suboptimal and expert
trajectories jointly under a single objective.

Our approach builds on the ranking perspective of im-
itation learning [29] which uses visitation distributions to
denote long-term behavior of an agent. We denote ϑε(s, a),
ϑE(s, a), ϑS(s, a) to be the agent, expert, and suboptimal
state-action visitation distributions respectively. We assume
the reward function is conditioned on ybev as before, but drop
it from the derivation for conciseness. Under this notation the
problem of return maximization becomes finding a visitation
induced by a policy ϱ that maximizes the expected return
given by:

max
ε

Jε(rω) = max
ε

Eϑω(s,a)[rω(s, a)]. (5)

The reward function of the expert should satisfy the ranking
ϑε(s, a) ↑ ϑE(s, a), which implies that the expert’s visita-
tion distribution obtains a return that is greater or equal to
any other policy’s visitation distribution in the environment:

ϑε(s, a) ↑ ϑE(s, a) =↓ Eϑω(s,a)[rω(s, a)]

↔ EϑE(s,a)[rω(s, a)]. (6)



This property extends to any suboptimal visitations, and
as a consequence of linearity of expectations, to any convex
combination of the current policy’s visitation and any other
suboptimal visitation distribution. Mathematically,

ωϑε(s, a) + (1→ ω)ϑS(s, a) ↑ ϑE(s, a) ↗ω ↘ [0, 1]. (7)

Thus, given suboptimal visitation distributions, we can
create a number of pairwise preferences by choosing a
suboptimal visitation and a particular ω. We turn to the
Bradley-Terry model of preferences to satisfy these pair-
wise preferences which assumes that preferences are noisy-
rational and that the probability of a preference can be
expressed as:

P (ϑE(s, a) ≃ ωϑε(s, a) + (1→ ω)ϑS(s, a)) =

eJ
E(rε)

eJE(rε) + eϖJω(rε)+(1→ϖ)JS(rε)

=
1

1 + eϖ(JS(rε)→JE(rε))+(1→ϖ)(Jω(rε)→JE(rε))
.

(8)

Finding a reward function implies maximizing the like-
lihood of observed preferences while the policy optimizes
the learned reward function. Since, the convex combination
holds for all values of ω ↘ [0, 1], we consider optimizing
against the worst-case to obtain the following two-player
counterfactual IRL objective, where the reward player learns
to satisfy rankings against the worst-possible ω:

max
ω

min
ϖ

P
(
ϑE(s, a) ≃ ωϑε(s, a) + (1→ ω)ϑS(s, a)

)
(9)

and the policy player maximizes expected return:

max
ε

Jε(rω). (10)

In practice, optimizing for worst-case ω for each BEV
scene ybev can quickly make solving the optimization ob-
jective challenging due to the large number of scenes we
train the reward function on. We make two mild approxima-
tions that we observed to make learning more efficient and
tractable: First, we replace the worst-case ω with a fixed ω,
and second, we consider maximizing a pointwise monotonic
transformation to the Bradley Terry loss function that directly
maximizes ω(JS(rω)→JE(rω))+(1→ω)(Jε(rω)→JE(rω))
instead of its sigmoid transformation. With these changes, we
can rewrite our practical counterfactual IRL objective as:

min
ε

max
ω

(
JE(rω)→ (ωJS(rω) + (1→ ω)Jε(rω))

)
. (11)

This objective reveals a deeper connection between ap-
prenticeship learning (Eq 6 [30]) obtained by setting ω to 0
and learning from preferences [23] obtained by setting ω to
1. The loss function goes beyond the apprenticeship learning
objective that only learns from expert by incorporating sub-
optimal demonstrations. Second, it goes beyond the offline
nature of prior algorithms that learn from preferences alone
by instead learning a policy that attempts to match expert
visitation making use of the suboptimal demonstrations.

Fig. 7: Mobile robot,
Clearpath Jackal, used
for real-world experi-
ments with sensors for
deployment annotated.

C. Training Details
In this section, we supple-

ment the implementation details
for CRESTE and each baseline
described in Sec. III.

1) CRESTE: We warm-start
the RGB-D backbone for 50
epochs or until convergence. We
set ω1 and ω2, the loss weights
for semantic feature regression
and completion, to 1 and 0.5,
respectively, and keep this fixed
for the rest of training. After
this, we freeze the RGB-D back-
bone and train the fbev using the

BEV inpainting backbone loss Lbev for five epochs before
unfreezing the RGB-D backbone and training end-to-end for
another 45 epochs or until convergence. This enables faster
convergence by stabilizing fbev before joint training. We set
ε1, ε2, and ε3 to 1, 2, and 3 for Lbev, but find that training
remains stable for any reasonable combination of values.
Finally, we empirically find that replacing the Supervised
Contrastive loss [18] with Cross Entropy loss while training
the dynamic panoptic head fbev, dynamic empirically improves
overall performance. Thus, we use this model for our long-
horizon navigation experiments presented in Table II. We
summarize additional model architecture details in Table III
and training hyperparameters in Table IV.

As mentioned in Sec. II-B.2, we train our reward func-
tion rω in two phases. During both phases, we freeze !,
thus only training rω. During initialization (Phase I), we
train for 25 epochs, setting ω = 0 only to use expert
demonstrations. During finetuning (Phase III), we initialize
rω from scratch, train for 50 epochs, setting ω = 0.5 and
a reward regularization term [21] ωreg = 1.0. Empirically,
we find that our objective is stable for a range of ω values
and benefits from a larger reward regularization penalty to
encourage more discriminative rewards. In total, we train the
perceptual encoder ! and reward function rω for a combined
150 epochs.

2) ViNT [8]: To modify ViNT to follow XY goal guidance
instead of image goal guidance, we follow the architecture
design details in the ViNT paper for adapting the backbone to
GPS goal guidance. We only train the XY goal encoder and
freeze the remaining model parameters. We sample XY goals
from future odometry between 8 to 10 seconds to generate
training data.

3) PIVOT [11]: We condition PIVOT using an annotated
satellite view image, an annotated front view image with
numbers indicating goal candidates, and text instructions.
We annotate a satellite image containing the robot’s current
position, heading, and next goal GPS coordinates. Finally,
we provide the text prompt below:

I am a wheeled robot that cannot go over objects.
This is the image I’m seeing right now. I have



Fig. 8: Qualitative comparison of local paths planned by different learned baselines in different geoegraphic locations:
Hemphill Park, Sherlock North, Sherlock South, Trader joes, Woolridge. We visualize each chosen path either in bird’s eye
view (BEV) or on the front view RGB image in aqua blue. For PACER+Geometric [3], we provide the BEV image used
by the model. For PIVOT [11], we show the annotated satellite image and front view image used to prompt the VLM. For
ViNT [8], we front view RGB image given as input. For more information regarding each baseline, we refer readers to
Appendix Sec. VI-D.1.

annotated it with numbered circles. Each number
represents a general direction I can follow. I have
annotated a satellite image with my current loca-
tion and direction as a red circle and arrow and the
goal location as a blue circle. Now you are a five-
time world champion navigation agent and your
task is to tell me which circle I should pick for the
task of: going forward X degrees to the Y? Choose
the best candidate number. Do NOT choose routes
that go through objects AND STAY AS FAR AS
POSSIBLE AWAY from untraversable terrains and

regions. Skip analysis and provide your answer at
the end in a json file of this form: ”points”: []

where X is replaced by the degrees from the goal computed
using the magnetometer heading and goal GPS location, and
Y is either left or right depending on the direction of the goal.
During testing, we use our geometric obstacle avoidance
module to safely reach the current goal selected by PIVOT.

4) PACER [3]: PACER is a terrain-aware model that
predicts BEV costmaps from BEV images. It requires pre-
enumerating an image context that specifies the preference
ordering for terrains. In all environments, we would like the



TABLE III: Architecture Hyperparameters for CRESTE.

Hyperparameter Value
RGB-D Encoder (frgbd)
Base Architecture EfficientNet-B0 [15]
Number of Input Channels 4
Input Spatial Resolution 512↓ 612
Output Spatial Resolution 128↓ 153
Output Channel Dimension 256
Semantic Decoder Head (fsemantic)
Input Spatial Resolution 128↓ 153
Input Channel Dimension 256
Output Spatial Resolution 128↓ 153
Output Channel Dimension 128
Number of Hidden Layers 4
Depth Completion Head (fdepth)
Input Spatial Resolution 128↓ 153
Input Channel Dimension 256
Output Spatial Resolution 128↓ 153
Number of Depth Bins 128
Number of Hidden Layer 2
Depth Discretization Method Uniform
Number of Intermediate Layers 2
Lift Splat Module (fsplat)
Total Input Channel Dimension 288
Input Semantic Channel Dimension 256
Input Depth Channel Dimension 32
Map Cell Resolution 0.1m↓ 0.1m↓ 3
Output Channel Dimension 96
Output Spatial Resolution 256↓ 256
BEV Inpainting Backbone (fbev)
Base Architecture ResNet18 [31]
Input Channel Dimension 96
Input Spatial Resolution 256↓ 256
Output Static Panoptic Dimension 32
Output Dynamic Panoptic Dimension 32
Output Elevation Dimension 1
Reward Function (rω)
Base Policy Architecture Value Iteration Network [32]
Base Reward Architecture MultiScale-FCN [33]
Input Spatial Resolution 256↓ 256
Input Channel Dimension 65
Prepool Channel Dimensions [64, 32]
Skip Connection Channel Dimensions [32, 16]
Trunk Channel Dimensions [32, 32]
Postpool Channel Dimensions [48]
# Future Actions 50
# Actions Per State 8
Discount Factor 0.99

robot to prefer traversing terrains in the following prefer-
ence order: sidewalk, dirt, grass, rocks. Thus, we condition
PACER on this preference order for all environments.

D. Qualitative Analysis

In this section, we present a qualitative analysis of the
short-horizon experiments for each location. For each exper-
iment area illustrated in Fig. 4, we compare the planned path
for each learned baseline in approximately the same location.

1) Comparing CRESTE Against Existing Baselines:
Fig. 8 provides additional context to understand the inputs
given to each baseline and the planned path, which we
describe as follows: 1) CRESTE - The input RGB and sparse
depth image (not shown) and predicted BEV cost map where
darker regions correspond to low cost, 2) PACER+Geometric
(PACER+G) [3] - The input BEV image and predicted BEV
cost map where darker regions correspond to lower cost, 3)
PIVOT [11] - The annotated satellite image with the robot’s

TABLE IV: Training Hyperparameters for CRESTE.

Hyperparameter Value
RGB-D Backbone Training (frgbd)
Semantic Loss Weight (ω1) 2.0
Depth Completion Loss Weight (ω2) 0.5
# Training Epochs 50
Batch Size 12
Optimizer AdamW [34]
Adam ε1 0.9
Adam ε2 0.999
Learning Rate 5↓ 10→3

Learning Rate Scheduler Exponential
Learning Rate Gamma Decay ϑ 0.98
GPU Training Hours 10 Hours
GPUS Used 3 Nvidia H100 GPUs
BEV Inpainting Backbone Training (fbev)
Static Panoptic Loss Weight (ε1) 1.0
Dynamic Panoptic Loss Weight (ε2) 2.0
Elevation Loss Weight (ε3) 3.0
Warmup Epochs 5
# Training Epochs 50
Batch Size 24
Optimizer AdamW [34]
Adam ε1 0.9
Adam ε2 0.999
Learning Rate 5↓ 10→4

Learning Rate Scheduler Exponential
Learning Rate Gamma Decay ϑ 0.98
GPU Training Hours 24 Hours
GPUS Used 3 Nvidia H100 GPUs
Reward Function Training (rω)
Batch Size 30
Optimizer AdamW [34]
Adam ε1 0.9
Adam ε2 0.999
Learning Rate 5↓ 10→4

Learning Rate Scheduler Exponential
Learning Rate Gamma Decay ϑ 0.96
Reward Learning Weight LIRL 1.0
Reward Smoothness Penalty Weight 4.0
GPU Training Hours 2 Hours
GPUS Used 3 Nvidia H100 GPUs

current location (blue circle), heading (blue arrow), and goal
location (red circle). The front view RGB image annotated
with numbered circles for prompting the VLM along with
the chosen circle highlighted in green, 4) ViNT [8] - The
front view image annotated with the local path waypoints
predicted by ViNT.

Analyzing each model, we find that PACER+G struggles
to infer the cost for terrains that are underrepresented in
the training dataset, such as dome mats. Furthermore, when
two terrains look visually similar, such as the sidewalk
and road pavement for the Trader Joes location, PACER
infers the costs incorrectly. PIVOT can select the correct
local waypoint in scenes with a large margin for error, but
struggles at dealing with curb cuts (Hemphill Park, Sherlock
North) and narrow sidewalks (Trader Joes). Long latency
between VLM queries negatively impacts the model’s ability
to compensate for noisy odometry. This effect is particularly
apparent in narrow corridors or sidewalks where even minor
deviation from the straight line path results in failure. ViNT
can successfully maintain course in straight corridors and
sidewalks, but struggles to consider factors like curb cuts
and terrains. We hypothesize this is because our dataset is



not sufficiently large for learning generalizable features from
expert demonstrations alone. Furthermore, demonstrations
with straight line paths dominate our dataset, making it
difficult for behavior cloning methods like ViNT to learn
which factors influence the expert to diverge from the straight
line path.
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