
CRED: Counterfactual Reasoning and Environment
Design for Active Preference Learning

Yi-Shiuan Tung, Bradley Hayes, and Alessandro Roncone
Department of Computer Science, University of Colorado Boulder
{yi-shiuan.tung, bradley.hayes, alessandro.roncone}@colorado.edu

Abstract—For effective real-world deployment, robots should
adapt to human preferences, such as balancing distance, time,
and safety in delivery routing. Active preference learning (APL)
learns human reward functions by presenting trajectories for
ranking. However, existing methods often struggle to explore the
full trajectory space and fail to identify informative queries, par-
ticularly in long-horizon tasks. We propose CRED, a trajectory
generation method for APL that improves reward estimation by
jointly optimizing environment design and trajectory selection.
CRED “imagines” new scenarios through environment design
and uses counterfactual reasoning–by sampling rewards from
its current belief and asking “What if this reward were the
true preference?”–to generate a diverse and informative set of
trajectories for ranking. Experiments in GridWorld and real-
world navigation using OpenStreetMap data show that CRED
improves reward learning and generalizes effectively across
different environments.

I. INTRODUCTION

Planning under user preferences often involves trade-offs
among competing objectives, such as time, cost, and risk.
However, users’ preferences over these trade-offs are rarely
known ahead of time and can vary across individuals and
contexts, making it difficult for autonomous systems to make
decisions that align with user expectations. One illustrative
domain is autonomous delivery, where robots must select
routes that balance factors like travel time, energy consump-
tion, tolls, and surface conditions (e.g., paved vs. unpaved)
[12, 3]. For example, a user might accept higher energy costs
for substantial time savings (e.g., traversing grass) but not for
marginal gains. These preferences are hard to hand-specify
and vary between different businesses and individuals [28].

Preference learning (PL) aims to learn a reward function
based on human preferences between pairs of trajectories,
eliminating the need to manually define rewards and allow-
ing for personalization. Unlike inverse reinforcement learning
which requires demonstrations, PL allows non-expert users to
provide input in complex domains like Atari games, robot
locomotion, and routing [8, 14, 27]. However, PL can be sam-
ple inefficient, often requiring numerous human preferences
for accurate reward learning, which limits its applicability in
high-dimensional problems. To address this, Active Preference
Learning (APL) finds preference queries—sets of robot trajec-
tories presented to a human—that maximize information gain
[21, 4]. Previous work optimizes over a pre-generated set of
trajectories [5] or the replay buffer [16] to make optimization
tractable, but this method may not sufficiently explore the
full feature space, resulting in poor generalization to novel

(a) Suboptimal queries (b) Counterfactuals

(c) Environment design (d) Generalization

Fig. 1: The delivery robot above (goal: yellow pin) optimizes
its path by considering factors like travel time, energy, safety,
and surface conditions. Through active preference learning, it
infers human rewards from trajectory rankings. (a) However,
current state-of-the-art methods often struggle to efficiently
generate informative trajectory pairs for these queries, leading
to suboptimal results. To overcome this, our approach incor-
porates two key contributions: (b) counterfactual reasoning,
which explores varied hypothetical preferences to produce
more diverse trajectories, and (c) environment design, which
”imagines” different scenarios—such as altering terrain from
grass to gravel—to enhance the system’s generalization capa-
bilities. (d) As a result, the robot can more effectively adhere
to human preferences, even in novel environments.

environments, especially for long-horizon problems such as
robot routing.

We introduce CRED, a novel and efficient query generation
method for APL that learns reward functions which generalize
to different scenarios by using 1) Counterfactual Reasoning
and 2) Environment Design. Instead of generating queries
through random rollouts [5, 16], CRED’s counterfactual rea-
soning generates queries that reflect different hypothesized
human preferences. Assuming a linear human reward model
where RH(ξ) = wTϕ(ξ) (the dot product of reward weights

w and trajectory features ξ(ϕ)), learning the reward function
simplifies to learning w. We use Bayesian inference [20] to
maintain a belief over w, updated with each human query.
By sampling diverse w values (based on cosine similarity)
from the current belief, CRED directly evaluates different
human preferences and performs counterfactual reasoning,
effectively asking ”what if wi or wj were the true reward
weight?” Our second key insight is that the environment
influences the generated trajectories and thus the information
value of queries. CRED employs Bayesian Optimization [17]
to efficiently find environment parameters that yield the most
informative preference queries.

Experiments in a GridWorld domain and real-world naviga-
tion using OpenStreetMap data [18] demonstrate that CRED
generates more informative preference queries and converges
faster to the true reward function compared to prior methods.
Furthermore, CRED learns rewards that generalize to new
environments by querying human preferences in ”imagined”
scenarios. We assume the robot has knowledge of the features
and that ground truth rewards generalize; our goal is to learn
the reward weights such that they do generalize. In summary,
our contributions are: 1) an environment design approach that
enables querying human preferences across diverse contexts,
2) a query generation method that uses counterfactual rea-
soning which generates trajectories that better reflect different
human preferences, and 3) a demonstration of our method’s
ability to generalize to novel environments through experi-
ments in two domains. Our approach enables robots to learn
human preferences more effectively and with fewer iterations.

II. RELATED WORKS

Robot Routing. Prior work in autonomous robot routing
often employs optimization methods to minimize travel time
and costs [19]. However, these methods have difficulty adapt-
ing to dynamic environments in real-time due to the high
computational cost of the optimization problems, prompting
the use of reinforcement learning (RL). Bozanta et al. [6]
and Chen et al. [7] apply RL for route planning but focus
on rewarding successful deliveries without considering trade-
offs between different factors. In contrast, this paper models
the reward as a function of several features such as travel
time, distance, terrain types etc. Barnes et al. [3] incorporates
road properties such as distance, surface condition, and road
type, and learns a reward function from a large Google Maps
dataset. Our approach, however, focuses on personalization,
enabling rapid adaptation of learned rewards by iteratively
querying the human for preferences and eliminating the need
for large demonstration datasets.

Preference Learning. Preference learning learns the hu-
man’s reward function by presenting the human with robot
trajectories and then asking the human to pick the best one [5].
In active preference learning (APL), the objective is to find the
most informative preference query (i.e. a pair of trajectories
to query the user) by finding the query that maximizes the
expected difference between the prior and the posterior belief
distributions over the rewards [21]. Subsequent work improves

the objective to maximize the mutual information of the query
and the estimated weights which generates queries that are
easier for humans to answer [5]. To improve the time efficiency
of APL, Biyik and Sadigh [4] proposes batched queries so that
queries can be answered in parallel.

A major challenge of APL is generating trajectories that
maximize the mutual information objective. Biyik et al. [5] and
Lee et al. [16] address this by optimizing within a fixed set of
trajectories, but this approach does not scale for long-horizon
problems. In addition, the preference queries are generated
within the context of the current environment, and previous
research has not utilized environment design to improve query
quality. Our work uses counterfactual reasoning to generate
trajectories based on a belief distribution of reward weights
while also optimizing environment parameters to maximize
mutual information, thereby improving the information gain
of the resulting preference queries.

Environment Design in RL and Robotics. Environment
design treats environment parameters as optimizable variables.
In RL, it has been leveraged for curriculum learning to
improve generalization and convergence, for instance, through
co-evolution of agents and environment difficulty [26] or
by modifying parameters to maximize an agent’s learning
potential [10, 1]. In human-robot interaction, environment
modification has been used to generate interpretable robot
behaviors [15], legible human motion [25], and to support
collaborative teaming in settings like warehouse design [29]
or tabletop reorganization [2]. Our work applies environment
design within APL to find informative preference queries that
can effectively reduce the posterior entropy (uncertainty) of
the learned reward function.

III. PRELIMINARIES

Model. We consider a fully observable environment mod-
eled as a Markov decision process (MDP) consisting of
{S,A, T ,R, γ,S0}, where S is the set of states, A is the set
of actions, T : S × A × S → [0, 1] is the transition function,
R : S → R is the reward function, γ ∈ [0, 1) is the discount
factor, and S0 is the initial state distribution. We do not have
access to the reward function R which we have to learn from
human preferences. We use st ∈ S and at ∈ A to denote
the state and action at time t. A trajectory, ξ ∈ Ξ, is a finite
sequence of states and actions; ξ = ((st, at)

T
t=0) where T is

the time horizon of the environment.
For autonomous routing, a graph structure is commonly

used in which the nodes represent the locations and the edges
represent the streets [3]. The set of states S is therefore the
set of nodes, and the actions at each node are the outgoing
edges. Our goal is to learn the human’s reward function RH

which is modeled as a linear combination of weights w and
features Φ of a trajectory, RH(ξ) = wTΦ(ξ). Learning RH

thus simplifies to learning the weights w.
Preference learning. The objective of preference learning is

to learn w by querying a human for their preferences between
pairs of trajectories. A preference query typically asks ”Do
you prefer trajectory ξA or ξB?” [4]. If a human prefers

ξA over ξB , it implies RH(ξA) > RH(ξB), or equivalently
wTΦ(ξA) > wTΦ(ξB). From this strict inequality, we can
derive that wT (Φ(ξA) − Φ(ξB)) > 0. Let ψ(ξA, ξB) =
Φ(ξA) − Φ(ξB) denote the difference between the features
of the two trajectories. The human’s preference I can then be
encoded by I = sign(wTψ).

The human input may be noisy due to uncertainty in
their preferences, which can be modeled using Boltzmann
rationality, where the likelihood of a preference (Eqn. 1) is
determined by a softmax function:

P (I | w) =

{
exp(RH(ξA))

exp(RH(ξA))+exp(RH(ξB)) if I = +1
exp(RH(ξB))

exp(RH(ξA))+exp(RH(ξB)) if I = −1
(1)

Let p(w) be our current belief distribution of the reward
weights. We can perform a Bayesian update to compute the
posterior given human input I , p(w|I) ∝ p(I|w)p(w). For
uniqueness, we constrain the norm of the reward weights such
that ∥w∥2 ≤ 1. Since p(w) can have arbitrary shapes, we use
an adaptive Metropolis algorithm [11] to learn the posterior
distribution. Based on Biyik et al. [5], the algorithm presents
the human with a preference query and updates the belief
distribution of w until a fixed number of iterations is reached.

Active Synthesis of Preference Queries. To learn w
efficiently using minimal queries, active learning methods
select preference queries (ξA, ξB) that maximize information
gain. This is equivalent to maximizing the mutual information
between the query and the estimated weights w [5]. Our
objective function f is

max
ξA,ξB

f(ξA, ξB) = max
ξA,ξB

H(w)− EI [H(w|I)] (2)

where H(w) = −Ew[log(p(w))] is the information entropy of
the belief p(w). This objective finds preference queries such
that the difference between the entropy of the prior and the
posterior is maximized. However, evaluating this objective is
computationally expensive [4] and often leads to suboptimal
solutions. The next section discusses our approach of using
counterfactual reasoning and environment design to more
effectively generate trajectories that optimize this information
gain objective.

IV. TECHNICAL APPROACH

Active preference learning faces challenges in generating
trajectories that optimize for information gain (Eqn. 2), as the
objective function involves a pair of trajectories as variables.
This task is further complicated by the fact that the optimiza-
tion is typically constrained to a single environment, which
may not adequately represent the full feature space, resulting
in learned rewards that often fail to generalize effectively. We
discuss our approach of using counterfactual reasoning and
environment design to address these issues.

A. Counterfactual Reasoning

Counterfactual reasoning explores different trajectories that
could result if various reward weights were the true weights.
We maintain a belief over the weights while estimating the

human’s reward function, where each sample of weights
could lead to a different policy and consequently different
trajectories when the policy is executed. This allows us to
pose counterfactual questions, such as ”what if reward i is the
true reward as opposed to reward j?” Let wi be an instance
of reward weights sampled from our belief. We can train a
policy πi that maximizes the reward function based on wi by
using RL algorithms such as value iteration or PPO [24]. If
we rollout the policy πi in an environment, we get a trajectory
ξi (Algorithm 1 lines 4-5).

By sampling reward weights and generating trajectories,
we construct a set of counterfactual trajectories that represent
different human preferences. We then evaluate the information
gain objective (Eq. (2)) for each pair of trajectories to identify
the most informative preference query (Algorithm 1 lines 7-
8). To minimize the number of evaluations of the objective
function, we start by sampling N reward weights. We then
select the most diverse M weights, where M < N , from this
set by sequentially computing diversity based on cosine sim-
ilarity, forming our final set of reward weights for evaluation
(Algorithm 1 lines 1-2).

Algorithm 1 Counterfactual Reasoning

Require: Belief P (w), N samples, M subset size
1: Sample {w1, . . . , wN} ∼ P (w)
2: Select M diverse weights (e.g., max cosine distance)
3: for each selected wk do
4: Train policy πk to maximize wT

k Φ(ξ)
5: Generate trajectory ξk by rolling out policy πk
6: end for
7: Compute information gain (Eq. 2) for all pairs ξi, ξj
8: Return most informative pair (ξi, ξj)

B. Environment Design

While counterfactual reasoning generates trajectory pairs
optimizing for different reward weights, the fixed environment
can limit their ability to reveal crucial preference distinctions.
We posit that if we have the ability to ”imagine” new envi-
ronments or scenarios, we can better generate trajectories that
show the differences between the different reward weights.

More formally, let ΘE denote the set of environment
parameters that the algorithm can modify (e.g. terrain type).
The feature function Φ now depends on θE ∈ ΘE and can
be represented as ΦθE . The return of a trajectory is thus
modified as RH(ξ) = wTΦθE (ξ). Let F be the information
gain objective from Eqn. 2 but it includes θE as a parameter.
We formulate environment design as a bilevel optimization
problem:

max
θE ,ξA,ξB

F (ξA, ξB , θE) s.t. (ξA, ξB) ∈ arg max
ξA,ξB

f(ξA, ξB)

(3)
The upper level optimization of objective function F selects

environment parameters θE which is then used by the lower
level optimization to find the preference query ξA and ξB that
maximizes information gain f from Eqn. 2.

Since F (ξA, ξB , θE) is generally not differentiable with
respect to θE , we use Bayesian optimization, a global op-
timization method that uses a Gaussian process (GP) to
model F [23]. GP is a distribution on functions which has
a mean function m : ΘE → R and a positive definite
covariance function K : ΘE × ΘE → R. We use the
upper confidence bound (UCB) as the acquisition function that
selects the next θE to evaluate by finding θE that maximizes
UCB(θE) = µ(θE) + κσ(θE). κ is a hyperparameter that
balances exploitation against exploration. Algorithm 2 shows
the pseudocode for environment design.

Algorithm 2 Environment Design

Require: Environment parameters ΘE , Bayesian optimization
iterations T

1: for t = 1 to T do
2: Propose θtE using Bayesian optimization
3: Generate (ξA, ξB) via CR (Algorithm 1) in env θtE
4: Compute information gain F (ξA, ξB , θtE)
5: Update GP model with (θtE , F (ξA, ξB , θ

t
E))

6: end for
7: Return optimal θ∗E found and corresponding (ξA, ξB)

V. EXPERIMENTS

(a) GridWorld Navigation (b) OpenStreetMaps

Fig. 2: (a) Sample environments used in the GridWorld Nav-
igation experiments. The terrain types are brick (red), gravel
(gray), sand (moccasin), and grass (green). (b) The street graph
used in the OpenStreetMap Navigation experiments. Nodes
and edges are highlighted in black.

Our experiments aim to address the following hypotheses:
• H1: CRED generates queries with higher information

gain than those generated by baselines.
• H2: CRED learns more accurate rewards with fewer

iterations compared to baselines.
• H3: CRED learns reward functions that generalize more

effectively to novel environments.

A. Environment Setup

GridWorld Navigation. The GridWorld environment in-
cludes various terrains, such as brick, gravel, sand, and grass
(Fig. 2a). These environments were created by prompting
GPT-4 to create realistic scenarios with a diverse distribution
of features. From left to right, the environments were titled arid
highlands, crossroads pass, coastal village, and forest desert.
Our goal is to assess whether our approach effectively learns
reward functions that capture the trade-offs between traversing
different terrain types. We do not include time and safety as

explicit features since they can be inferred from the terrains
traversed. Each environment is a 15 x 15 grid where the goal is
positioned in the bottom-right corner. We use arid highlands
for training and the rest for testing. We also used different
environments for training and observed similar results. Thus,
we only present the results from training on arid highlands.

The number of environment parameters, |θE |, corresponds
to the total number of grid cells—225—which is too high
for Bayesian optimization (Sec. IV-B) to perform efficiently.
To address this, we use variational autoencoders or VAEs [9]
to compress the distribution of environments into a lower-
dimensional latent space Z . By optimizing over this latent
space, we can effectively learn the mutual information objec-
tive F (Eqn. 3) as a function of environment parameters.

OpenStreetMap Navigation. We also evaluate CRED on a
real-world routing task using data from OpenStreetMaps [18]
(Fig. 2b). The features considered include distance, travel time,
and elevation changes (ascents/descents). Our experiments
focus on last-mile deliveries, restricting the map area to a 500-
meter radius from a central latitude and longitude point.

For training, we use a simplified street network consisting
of 9 nodes and 12 edges, where distances, travel times, and
elevations are sampled uniformly from the ranges [1, 5], [2, 5],
and [-1, 1], respectively. In the test environments, these values
range from [0.9, 405], [0.1, 291], and [-4.7, 4.7], respectively,
though they are heavily skewed towards the lower end. This
design ensures that the training differs from the testing en-
vironments, making it out of distribution. The environment
parameters are the edge features, resulting in a total of 36
variables. While we initially experimented with variational
graph autoencoders [13] to optimize over a lower-dimensional
latent space, we found that directly using edge features as
environment parameters yielded better performance.

B. Baselines

We compare our approach to two state of the art preference
learning algorithms. First, we optimize the mutual information
objective (Eqn. 2) over pre-generated trajectories obtained
from random rollouts [5] which we term RR. In addition,
we adopt the trajectory generation method from Christiano
et al. [8]. We train a policy using the mean of the current
belief and generate trajectories through rollouts, allowing the
policy to take random actions with probability ϵ (25% in
our experiments). We refer to this baseline as the Mean
Belief Policy, abbreviated as MBP. Furthermore, we perform
ablations of our full system: first, we combine our approach
environment design (ED) (Sec. IV-B) with MBP and refer to
this as MBP + ED. Lastly, we use counterfactual reasoning
(Sec. IV-A) alone as a baseline, referring to it as CR.

C. Metrics

Belief Entropy. This metric measures the uncertainty of the
estimated rewards. The belief over reward weights is estimated
by using Monte Carlo Markov Chain which generates likely
samples from the distribution. To compute entropy, we first fit

a probability function over these samples using Gaussian ker-
nel density estimation (KDE), which approximates the proba-
bility density by using Gaussian kernels as weights [22]. We
then create a grid covering the dimensions of the weight vector
and compute the probability of each grid cell using KDE. The
entropy is approximated as H ≈

∑
i p(xi)logp(xi)∆V where

∆V is the volume of each grid cell and p(xi) is the KDE-
evaluated density at grid point xi.

Difference in Rewards. This metric quantifies the percent-
age difference in cumulative rewards compared to the ground
truth. After training, we sample a set of reward weights from
the learned belief and train a policy πest for each. We compute
the percentage difference in rewards between the estimated
policy evaluated under the true reward (Rest) and the ground
truth policy (Rgt): diff(west) = (Rest−Rgt)/abs(Rgt)∗100.
We report the expected value by averaging over the belief
distribution:

∑
west

p(west)diff(west).
Policy Accuracy. This metric quantifies the similarity in

action selection between a policy trained on the estimated
reward and the ground truth policy. For sampled weights from
the belief, we train an estimated policy πest. Accuracy is the
proportion of states where the optimal action of πest matches
that of the ground truth policy πgt. We report the expected
accuracy, weighted by the probability of each sampled weight.

Jaccard Similarity. This metric measures the overlap in
visited states between trajectories generated by estimated
policies and the ground truth policy. For each estimated policy
πest, we generate a trajectory ξest by executing rollouts with
deterministic actions. The Jaccard similarity J(ξest, ξgt) is the
ratio of shared states to the total unique states: J(ξest, ξgt) =
|ξest ∩ ξgt|/|ξest ∪ ξgt|. We report the expected Jaccard simi-
larity, averaged over the belief distribution.

VI. RESULTS

Information Gain of Preference Queries. We evaluated
our approach using 10 simulated users, each initialized with a
different reward weight. This setup demonstrates our method’s
ability to learn a diverse range of reward functions. To ensure
diversity among the ground truth weights, we sample 1000
random weight vectors and select the cluster centers obtained
via K-Means as the ground truth weights. Figure 3 shows the
belief entropy and information gain objective across training
iterations. In both experiments, CRED generates preference
queries with higher information gain during the initial 10
iterations. As a result, the entropy of CRED decreases more
rapidly in the early stages and ultimately converges to a lower
value compared to the baselines, supporting H1.

Evaluation of Learned Rewards. Figure 4 shows the
box-and-whisker plots illustrating the difference in rewards,
policy accuracy, and Jaccard similarity when evaluating the
estimated rewards on the test environments. These plots show
the distribution of the data, where the central line within
each box represents the median, the upper and lower edges
correspond to the the first (Q1) and third (Q3) quartiles, and
the whiskers extend to 1.5 times the interquartile range from
Q1 and Q3. We also plot the mean as black triangles. In

RR MBP MBP + ED CR CRED (Ours)

Fig. 3: Belief entropy (left) and information gain from Eq. 2
(right) are shown over the course of training for GridWorld
(top) and OpenStreetMaps (bottom). Each line represents the
mean, with the shaded region indicating the standard deviation.
CRED selects preference queries with higher initial informa-
tion gain, leading to lower entropy compared to the baselines.

both experiments, CRED reaches the ground truth reward
the fastest, converging within 15 iterations, supporting H2.
The next best-performing algorithm, RR, takes approximately
25 iterations to converge when it does. Its relatively strong
performance stems from the lack of a constraint requiring
both trajectories in a preference query to reach the goal,
allowing it to generate more diverse trajectories in the feature
space. Table I shows the mean and standard deviation of
test environment metrics at the final training iteration. CRED
achieves an 84% and 97% reduction in reward difference, a 5%
and 1% absolute increase in policy accuracy, and a 6% and
1% absolute increase in Jaccard similarity compared to the
best-performing baseline for GridWorld and OpenStreetMaps,
respectively, supporting H3. Although the improvements in
policy accuracy and Jaccard similarity for OpenStreetMaps are
small, it’s important to note that the initial values at iteration
0 were already high (90%) due to a strong bias in the reward
function towards reaching the goal. Even small differences in
these percentages indicate substantial variations in how well
preferences are followed.

VII. CONCLUSION

In this work, we introduce CRED, a novel query generation
method for active preference learning that uses counterfactual
reasoning and environment design. By sampling from the
current belief over reward weights, we pose the counter-
factual ”what if this reward were the true reward?” These
counterfactuals generate trajectories that represent different
human preferences. Meanwhile, environment design creates
new scenarios to elicit human preferences in varied contexts,
enabling the learned reward functions to generalize effectively
to novel environments. Through experiments in GridWorld and

Difference in Rewards Policy Accuracy Jaccard Similarity

(a) GridWorld Navigation

(b) OpenStreetMaps Navigation
RR MBP MBP + ED CR CRED (Ours)

Fig. 4: Box-and-whisker plots depicting the differences in rewards, policy accuracy, and Jaccard similarity when evaluating
estimated rewards in the training and testing environments. Black triangles indicate the mean values. CRED converges to the
ground truth more quickly and achieves higher performance in test environments.

GridWorld OpenStreetMaps

Condition
Diff. in

Rewards (↑)
Policy

Accuracy (↑)
Jaccard

Similarity (↑)
Diff. in

Rewards (↑)
Policy

Accuracy (↑)
Jaccard

Similarity (↑)

RR -4.43 ± 13.49 0.92 ± 0.07 0.90 ± 0.22 -0.33 ± 1.28 0.99 ± 0.01 0.99 ± 0.02
MBP -6.32 ± 17.05 0.93 ± 0.06 0.91 ± 0.18 -0.62 ± 2.35 0.99 ± 0.01 0.97 ± 0.11

MBP + ED -4.77 ± 15.26 0.92 ± 0.06 0.91 ± 0.20 -3.49 ± 10.62 0.97 ± 0.05 0.92 ± 0.14
CR -4.54 ± 13.88 0.92 ± 0.07 0.89 ± 0.24 -1.72 ± 7.49 0.98 ± 0.03 0.97 ± 0.07

CRED -0.70 ± 6.58* 0.98 ± 0.02* 0.97 ± 0.12* -0.01 ± 0.05 1.00 ± 0.01 1.00 ± 0.00

TABLE I: Evaluation on test environments in the final training iteration. An asterisk (*) denotes statistical significance compared
to all baselines based on a one-way ANOVA test.

OpenStreetMaps navigation, we demonstrate that CRED gen-
erates preference queries with higher information gain, learns
human reward functions in fewer iterations, and achieves better
generalization to novel environments compared to previous
state of the art methods.

A limitation of our approach is that training a policy using
reinforcement learning for the sampled reward weights can
be time consuming. Potential solutions include parallelizing
training or using meta-learning to develop a single policy that
can be quickly fine-tuned for different reward weights.

ACKNOWLEDGMENTS

The authors would like to acknowledge Dusty Woods for
assistance with figures and image editing.

REFERENCES

[1] Abdus Salam Azad, Izzeddin Gur, Jasper Emhoff,
Nathaniel Alexis, Aleksandra Faust, Pieter Abbeel, and
Ion Stoica. Clutr: curriculum learning via unsupervised
task representation learning. In International Conference
on Machine Learning, pages 1361–1395. PMLR, 2023.

[2] Shray Bansal, Rhys Newbury, Wesley Chan, Akansel
Cosgun, Aimee Allen, Dana Kulić, Tom Drummond, and
Charles Isbell. Supportive actions for manipulation in
human-robot coworker teams. In 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 11261–11267. IEEE, 2020.

[3] Matt Barnes, Matthew Abueg, Oliver F Lange, Matt
Deeds, Jason Trader, Denali Molitor, Markus Wulfmeier,
and Shawn O’Banion. Massively scalable inverse re-

inforcement learning in google maps. In The Twelfth
International Conference on Learning Representations,
2024.

[4] Erdem Biyik and Dorsa Sadigh. Batch active preference-
based learning of reward functions. In Conference on
robot learning, pages 519–528. PMLR, 2018.

[5] Erdem Biyik, Malayandi Palan, Nicholas C Landolfi,
Dylan P Losey, Dorsa Sadigh, et al. Asking easy
questions: A user-friendly approach to active reward
learning. In Conference on Robot Learning, pages 1177–
1190. PMLR, 2020.

[6] Aysun Bozanta, Mucahit Cevik, Can Kavaklioglu,
Eray M Kavuk, Ayse Tosun, Sibel B Sonuc, Alper
Duranel, and Ayse Basar. Courier routing and assignment
for food delivery service using reinforcement learning.
Computers & Industrial Engineering, 164:107871, 2022.

[7] Xiaoyang Chen, Yunxiang Gan, and Shuguang Xiong.
Optimization of mobile robot delivery system based on
deep learning. Journal of Computer Science Research, 6
(4):51–65, 2024.

[8] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic,
Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. Advances in neural
information processing systems, 30, 2017.

[9] Lucas Pinheiro Cinelli, Matheus Araújo Marins, Eduardo
Antonio Barros Da Silva, and Sérgio Lima Netto. Vari-
ational methods for machine learning with applications
to deep networks, volume 15. Springer, 2021.

[10] Michael Dennis, Natasha Jaques, Eugene Vinitsky,
Alexandre Bayen, Stuart Russell, Andrew Critch, and
Sergey Levine. Emergent complexity and zero-shot
transfer via unsupervised environment design. Advances
in neural information processing systems, 2020.

[11] Heikki Haario, Eero Saksman, and Johanna Tamminen.
An adaptive Metropolis algorithm. Bernoulli, 7(2):223 –
242, 2001.

[12] Mokter Hossain. Autonomous delivery robots: A litera-
ture review. IEEE Engineering Management Review, 51
(4):77–89, 2023. doi: 10.1109/EMR.2023.3304848.

[13] Thomas N Kipf and Max Welling. Variational graph
auto-encoders. arXiv preprint arXiv:1611.07308, 2016.

[14] W Bradley Knox and Peter Stone. Augmenting rein-
forcement learning with human feedback. In ICML 2011
Workshop on New Developments in Imitation Learning
(July 2011), volume 855, 2011.

[15] Anagha Kulkarni, Sarath Sreedharan, Sarah Keren,
Tathagata Chakraborti, David E Smith, and Subbarao
Kambhampati. Designing environments conducive to
interpretable robot behavior. In 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 10982–10989. IEEE, 2020.

[16] Kimin Lee, Laura M Smith, and Pieter Abbeel. Pebble:
Feedback-efficient interactive reinforcement learning via
relabeling experience and unsupervised pre-training. In
International Conference on Machine Learning, pages
6152–6163. PMLR, 2021.

[17] Fernando Nogueira. Bayesian Optimization: Open
source constrained global optimization tool for Python,
2014. URL https://github.com/bayesian-optimization/
BayesianOptimization.

[18] OpenStreetMaps. Planet dump retrieved from
https://planet.osm.org. https://www.openstreetmap.org,
2017.

[19] Manuel Ostermeier, Andreas Heimfarth, and Alexan-
der Hübner. The multi-vehicle truck-and-robot routing
problem for last-mile delivery. European Journal of
Operational Research, 310(2):680–697, 2023.

[20] Deepak Ramachandran and Eyal Amir. Bayesian inverse
reinforcement learning. In IJCAI, volume 7, pages 2586–
2591, 2007.

[21] Dorsa Sadigh, Anca D. Dragan, S. Shankar Sastry, and
Sanjit A. Seshia. Active preference-based learning of
reward functions. In Robotics: Science and Systems,
2017.

[22] David W Scott. Multivariate density estimation: theory,
practice, and visualization. John Wiley & Sons, 2015.

[23] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical bayesian optimization of machine learning al-
gorithms. Advances in neural information processing
systems, 25, 2012.

[24] Richard S Sutton. Reinforcement learning: An introduc-
tion. A Bradford Book, 2018.

[25] Yi-Shiuan Tung, Matthew B Luebbers, Alessandro Ron-
cone, and Bradley Hayes. Workspace optimization tech-
niques to improve prediction of human motion during
human-robot collaboration. In Proceedings of the 2024
ACM/IEEE International Conference on Human-Robot
Interaction, pages 743–751, 2024.

[26] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O
Stanley. Paired open-ended trailblazer (poet): End-
lessly generating increasingly complex and diverse learn-
ing environments and their solutions. arXiv preprint
arXiv:1901.01753, 2019.

[27] Nils Wilde, Alexandru Blidaru, Stephen L Smith, and
Dana Kulić. Improving user specifications for robot
behavior through active preference learning: Frame-
work and evaluation. The International Journal of
Robotics Research, 39(6):651–667, 2020. doi: 10.
1177/0278364920910802. URL https://doi.org/10.1177/
0278364920910802.

[28] Bin Yang, Chenjuan Guo, Yu Ma, and Christian S Jensen.
Toward personalized, context-aware routing. The VLDB
Journal, 24:297–318, 2015.

[29] Yulun Zhang, Matthew C. Fontaine, Varun Bhatt, Ste-
fanos Nikolaidis, and Jiaoyang Li. Multi-robot coordi-
nation and layout design for automated warehousing. In
Edith Elkind, editor, Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence,
IJCAI-23, pages 5503–5511. International Joint Confer-
ences on Artificial Intelligence Organization, 8 2023. doi:
10.24963/ijcai.2023/611. URL https://doi.org/10.24963/
ijcai.2023/611. Main Track.

https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/bayesian-optimization/BayesianOptimization
https://doi.org/10.1177/0278364920910802
https://doi.org/10.1177/0278364920910802
https://doi.org/10.24963/ijcai.2023/611
https://doi.org/10.24963/ijcai.2023/611

	Introduction
	Related Works
	Preliminaries
	Technical Approach
	Counterfactual Reasoning
	Environment Design

	Experiments
	Environment Setup
	Baselines
	Metrics

	Results
	Conclusion

