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CR-DAgger. To improve a robot manipulation policy, we propose a compliant intervention interface (a) for collecting human

correction data, and use this data to update a compliant residual policy (b), and thoroughly study their effects by deploying the updated

policy on two contact-rich manipulation tasks in the real world (c).

Abstract—We address key challenges in Dataset Aggregation
(DAgger) for real-world contact-rich manipulation: how to collect
informative human correction data and how to effectively update
policies with this new data. We introduce Compliant Residual
DAgger (CR-DAgger), which contains two novel components: 1)
a Compliant Intervention Interface that leverages compliance
control, allowing humans to provide gentle, accurate delta
action corrections without interrupting the ongoing robot policy
execution; and 2) a Compliant Residual Policy formulation
that learns from human corrections while incorporating force
feedback and force control. Our system significantly enhances
performance on precise contact-rich manipulation tasks using
minimal correction data, improving base policy success rates
by over 50% on two challenging tasks (book flipping and belt
assembly) while outperforming both retraining-from-scratch and
finetuning approaches. Through extensive real-world experiments,
we provide practical guidance for implementing effective DAgger
in real-world robot learning tasks. Result videos are available at:
https://cr-dagger.github.io/

I. INTRODUCTION

To obtain a successful policy with learning from demonstra-
tion, human demonstrators often have to repeatedly deploy a
policy and observe its failure cases, then collect more data
to update the policy until it succeeds. This process is broadly
referred to as Dataset Aggregation (DAgger) [, 2]. However,
doing DAgger effectively for real-world robotic problems still
faces the following challenges:

How to collect informative human correction data?
DAgger is most effective when the correction data is within the
original policy’s induced state distribution [!]. In practice, the

common approach is either (1) collecting offline demonstrations
that cover the policy’s typical failure scenarios [3], or (2) human
taking over robot control during policy deployment [4, 5].
However, in both cases, it is difficult for human demonstrators
to gain the intuition for how to execute the corrective actions
without deviating excessively from the original distribution.
Human taking over additionally introduces force discontinuity
when they do not instantly reproduce the exact same robot
force. This is partially due to the lack of effective correction
interfaces that support precise and instantaneous intervention.

How to effectively update the policy with new data?
Prior methods for improving a pretrained policy with additional
data include (1) retraining the policy from scratch with the
aggregated dataset [2], which can be computationally expensive;
(2) finetuning the policy with only the additional data [6, 7, 8],
which is sensitive to the quality of the new data [9], and (3)
training a residual policy separately on top of the pretrained
policy, which is typically done with Reinforcement Learning
[10, 9] or Imitation Learning [ 1], both require a large number
of samples.

In this work, we address these questions by proposing an
improved system Compliant Residual DAgger (CR-DAgger)
consisting of two critical components:

o Compliant Intervention Interface. We propose an on-
policy correction system based on kinesthetic teaching to
collect delta action without interrupting the current robot
policy. Leveraging compliance control, the interface lets
humans directly feel the magnitude of their instantaneous
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Fig. 2: Compliant Intervention Interface characterized by a kines-
thetic correction hardware setup where humans hold on the handle
and apply forces to correct robot execution, providing on-policy delta
corrections.
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correction, so they can provide gentle adjustments. Unlike
take-over corrections that may cause force discontinuity, our
design allows smooth transition between correction/no cor-
rection mode, while maintaining distributional consistency
with the original policy.

Compliant Residual Policy. Leveraging the force feedback
from our Compliant Intervention Interface, we propose a
residual policy formulation that takes in an extra force
modality and predicts both residual motions and target forces,
which can fully describe the human correction behavior. The
Compliant Residual Policy is force-aware, even when the
base policy is position-only. We show that our residual policy
formulation learns effective correction strategies using the
data collected from our Compliant Intervention Interface.

Together, our system significantly improves the success
rate of precise contact-rich robot manipulation tasks using
a small amount of additional data. We demonstrate the
efficacy of our method on two challenging tasks with long
horizons and sequences of contacts: book flipping and belt
assembly. We improve over the base policy success rate by
over 50% using less than 50 intervention episodes, while also
outperforming retrain-from-scratch and finetuning under the
same data budgets.

II. CR-DAGGER METHOD
Our goal is to improve a pretrained robot policy with a

small amount of human correction data. Throughout the paper,
we use the term base policy to refer to the pretrained policy
without online improvements.

A. Compliant Intervention Interface

Correction data is most effective when it corrects failures
in policy-induced state distributions [1]. The interface through
which these corrections are collected significantly impacts
the quality of correction data, which should be intuitive
for demonstrators, capture critical corrective information at
precise moments of failures, and help correction data maintain
distributional consistency with base policy outputs.

There are two types of correction collection methods:
Off-policy correction is when humans observe failures of
the base policy during deployment, and then recollect extra
offline demonstrations to address failure cases. This approach
is most commonly used for improving Behavior Cloning
policy performance due to its simplicity - it requires no
additional infrastructure beyond the original data collection
setup. However, the resulting demonstrations may fail to cover

all the failure cases or deviate from the policy’s original
distribution. We focus on on-policy correction instead, where
humans can monitor policy execution and intervene on the
spot when failures occur or are anticipated. This approach
allows humans to provide corrections more targeted to the base
policy’s failure cases. However, challenges still exist for an
intervention system:

« Non-smooth transitions. Intervention in robotics is typically
implemented by fake-over correction: letting human take
complete control and overwrite robot policy. As the under-
lying control abruptly switches between robot policy and
human intention, disturbances are introduced due to policy
inference and human response latency, especially when the
robot is withholding external forces. The recorded data thus
may include undesired actions that do not reflect the human’s
intention.

« Distribution shift. The human intervention may still intro-
duce significant distribution shifts as the motion deviates
too much from the original policy distribution. Additionally,
the non-smooth transition above could bring in disturbances
and add to the distribution shift.

« Indirect correction brings errors. Correction is commonly
implemented via teleoperation interfaces such as spacemouse
or joysticks [7, 8]. With spatial mismatch and teleoperation
latency, it is hard for the demonstrator to instantly provide
accurate corrections upon intervention starts without going
through a short adjustment period.

o Missing information. The recorded correction data need to
fully describe the human’s intended action. Simply recording
the robot’s position is not sufficient, since it may be under the
influence of human correction force and will cause different
result when testing without human.

We propose a Compliant Intervention Interface with the
following designs to solve those challenges:

o Delta correction instead of take-over correction. Unlike
take-over correction, we propose a novel on-policy delta cor-
rection method: we let the robot policy executes continuously
while the human applies forces to the robot with a handle
mounted on the end effector, resulting in delta actions on top
of the policy action. The human demonstrator can always
sense the policy’s intention through haptic feedback, and
easily control the magnitude of intervention by the amount
of force applied to the handle. As a result, delta correction
ensures smooth intervention data and limits the human from
providing very large corrections that can easily lead to out-
of-distribution states. The approach is also intuitive as the
human can directly move the robot towards desired correction
directions.

« Correction interface with compliance control. In order to
apply delta correction over a running policy, we provide a
compliant interface that allows humans to safely intervene
and apply force to the robot to affect its behaviors at any
time, as shown in Fig. 2. We design a kinesthetic correction
hardware setup with a detachable handle for human to
hold when correcting, and allows easy tool-swapping for
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Fig. 3: Policy Update Methods. Left: Common policy update methods
- retraining and finetuning. Right: Ours. The base policy runs at
1 Hz. It takes in images /; and proprioceptions P and predicts 32

frames of end-effector poses A7 = {4} A} s Al Y spaced 0.1 Seconds

apart. The Compliant Residual Policy runs at 50Hz. It takes in
additional force inputs F; and predicts 5 frames of delta poses
AAY = {AAf AAY 047 ) and target forces Af spaced 0.02 Seconds
apart. The combined poses of A7 and AA?, and target forces A',f are
taken by an admittance controller to command the robot.

different tasks. We run a compliance controller (specifically
admittance control) in the background to respond to both
contact forces and human correction forces, allowing the
human to influence but not completely override the policy
execution. The admittance controller uses a constant stiffness
~1000N/m to allow easy human intervention and ensure
accurate tracking.

« Correction recording with buttons and force sensor. Our
interface additionally includes an ATI 6-D force sensor to
directly measure contact forces, and a single-key keyboard
placed on the handle to record the exact timings of correction
starts/ends. Both the policy’s original commands and the
human’s delta corrections are recorded, along with force
sensor readings during the interaction.

B. Compliant Residual Policy
Given the correction data, there are multiple ways to update

the policy. Common practices include retraining the base

policy from scratch with both initial data and correction
data, and finetuning the base policy with only the correction
data. However, retraining is costly as it requires updating
the entire base policy network from scratch with all the
available data. It also requires access to the base policy’s
initial training data, which might not be accessible for many
open source pretrained models. The amount of correction data
is significantly smaller than the initial training data, thus simply
mixing them together makes the policy hard to gain effective
corrective behaviors. While finetuning allows updating partial
policy network parameters with new data only, its training
stability can be easily affected by the distribution mismatch
between the correction data and initial training data. Moreover,
both retraining and finetuning can only update the policy with
its fixed network architecture while being unable to incorporate
new inputs and outputs. We propose a compliant residual policy
trained only on the correction data to refine base policy’s
position actions and predict additional force actions.
Compliant residual policy formulation. Our policy directly
learns corrective behavior from the human delta correction
data, as shown in Fig. 3. It takes as input the same visual

and proprioceptive feedback as the base policy but with a

shorter horizon. It also takes in an extra force modality, which

is available using our Compliant Intervention Interface. The

policy outputs five frames of actions at a time, corresponding
to 0.1 s of execution time when running at 50 Hz. The action
space is 15-dimensional: the first nine dimensions represent
the SE3 delta pose from the base policy action to the robot
pose command [3], while the later six dimensions represent
the expected wrench (force and torque) the robot should feel
from external contacts. Both the robot pose command and the
expected wrench are sent to a standard admittance controller
for execution with compliance.

The residual policy directly uses the base policy’s frozen
image encoder to extract an image embedding, a temporal
convolution network [12] to encode the force vectors, followed
by fully-connected layers to decode actions.

Advantages of this formulation include:

o Sample-efficient learning. The residual policy’s network is
light-weight and only requires a small amount of correction

data to train (~50 demonstrations).
e Incorporating new sensor modality. Residual policy can in-

corporate new sensor modality. This allows taking any
position-based pretrained policy and turning it force-aware
simply by collecting a small amount of correction data with

force modality.
e High-frequency inference. The light-weight residual policy

runs at a higher frequency than the base policy, incorpo-
rating high-frequency force feedback and enabling reactive
corrective behaviors.

Training strategy. In prior work, a residual policy is trained
either in simulation with RL [10, 9] to give it sufficient coverage
of the input distribution, or in the real world with pre-collected
behavior cloning data [13]. In this work, we train the Compliant
Residual Policy completely on the small amount of new real-
world correction data with the following strategies:

o Ensure sufficient coverage of in-distribution data. Human
correction tends to be frequent around a few key moments
of the task. A residual trained on correction data alone
can extrapolate badly around states where no correction is
provided. To help the residual policy understand when not
to provide corrections, we: (1) include the no correction data
for training but label it as zero residual actions; (2) collect
a few trajectories where the demonstrator always holds the
handle and marks the whole trajectory as correction even

when the correction is small or zero.
e Prioritize correction data over no-correction (zero residual

action) data. Similar to [14], we alter the sample frequency
of intervention data during training based on whether
they have human correction or not. Specifically, since the
moment of correction start indicates where the current policy
performs badly followed by immediate action to fix it, we
sample data more frequently for a short period immediately
after correction starts. Our real-world ablations (§ III-E)
demonstrate that our training strategies improve the quality
of the residual policy and the overall success rate.

ITI. EVALUATION
For each task, we train a diffusion policy [3] with 150
demonstrations as the base policy. We first deploy the base
policy and observe its performance and failure modes. Next,
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Fig. 4: Book Flipping Task. (a) Policy rollout of [Compliant Residual]
policy trained with [On-Policy Delta] data, demonstrating accurate
insertion motions and forceful pushing strategy. (b) Different test
scenarios. (c) Typical failure cases of the base policy: inserting too
high above the book and missing the gap; retracting the fingers before
the books can steadllv stand.
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Fig. 5: Belt Assembly Task. (a) Policy rollout of [Compliant Residual]
policy trained with [On-Policy Delta] data, demonstrating accurate
force-position coordination and adaptation. (b) Different test scenarios.
(c) Typical failure cases of the base policy: getting stuck on base next
to the small pulley; blocked by the the button on the large pulley;
and missing the slot by going too high above the pulley.

from the same base policy, we collect 50 correction episodes
with each data collection method. Then, we update the policy
using each network updating method and training procedure.
Finally, we deploy the updated policies and evaluate their
performance under the same test cases. Each data & policy
combination is evaluated on each task for 20 trials. Details of
tasks and comparisons are described below.

A. Contact-Rich Manipulation Tasks

Book Flipping: As shown in Fig. 4 (a), this task is to flip
up books on a shelf with long, pointy fingers. The robot needs
to first insert fingers below the book, then rotate and flip up
the book, and finally push the book firmly against the shelf
wall. A success is counted when the book can stand on its own
after the fingers retract.

This task is challenging for its rich use of physical contacts
and forceful strategies [15]. A position-only strategy always
fails immediately by triggering large forces, so we execute
all policies through the same admittance controller. The task
success requires high precision in both motion and force to
accurately align the fingers with the gap upon insertion, and
to provide enough force to rotate heavy books and make the
books stand firmly.

Each evaluation includes 20 rollouts on 4 test cases (5
rollouts each), as shown in Fig. 4 (b). We use the same test
cases and initial configurations for all evaluations.

Belt Assembly: As shown in Fig. 5 (a), this task is to
assemble a thin piece of belt onto two pulleys, which is part
of the NIST board assembly challenge [16]. Starting with the

belt grasped by the gripper, the robot needs to first thread the
belt over the small pulley, next move down while stretching
the belt to thread its other side on the big pulley, then rotate
180° around the big pulley to tighten the belt, and finally pull
up to release the belt from the gripper. The task is counted as
successful if the belt is stably assembled onto the two pulleys
after its release.

The task is challenging as it requires both position and force
accuracy throughout the process. Specifically, the belt is thin
and soft so the initial alignments onto the pulleys are visually
ambiguous. Also, since the belt is not stretchable, there is
more resistant force and less position tolerance as the belt
approaches the second pulley, requiring a policy with good
force-position coordination and adaptation. We ran 20 rollouts
across 4 different initial board positions for all methods (Fig. 5
(b)). We use the same test cases and initial robot configuration
for all evaluations.

B. Base Policy and its Failure Modes

The book flipping base policy achieves a 40% success rate
with the following common failure cases (Fig. 4 (¢)): (1) Missed
insertion. The fingers initially go too high above the book or
aims for the gap between the two books, failing to properly
insert beneath the books. (2) Incomplete flipping. At the last
stage, the policy retracts the blade before the book can stand
stably, causing it to fall back.

The belt assembly base policy achieves a 20% success rate
with the following common failure cases (Fig. 5 (¢)): (1) Missed
small pulley assembly. The policy often fails to properly control
the height of the gripper, causing the belt to get stuck at the
base of the board next to the small pulley. Sometimes the belt
also gets stuck in the nearby pulleys due to misaligned planar
positions. (2) Missed big pulley assembly. Common failure
cases are the gripper either going above or below the big pulley,
causing the belt to miss the slot.

C. Comparisons

We compare CR-DAgger with baselines across two dimen-
sions: correction method and policy update method. We present
the quantitative results in Fig. 6, and explain key findings in
§ 1I-D.

Correction data collection methods. We compare our
Compliant Intervention Interface with the two most commonly
used correction data collection strategies:

o Observe-then-Collect includes two steps: first, the policy
is deployed and human demonstrators observe the initial
settings that could cause failures; then, demonstrators provide
completely new demonstrations starting from similar initial
settings.

o Take-over-Correction (HG-DAgger) [2] is another common
correction strategy where human demonstrators monitor
policy execution and take complete control when failures
are anticipated. We implement Take-over-Correction on our
Compliant Intervention Interface by cleaning up command
buffer to the compliance controller and switching stiffness
to zero upon correction starts, so the robot policy does not
affect the robot during correction. When correction ends
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Fig. 6: Results. We compare CR-DAgger across two dimensions:
correction method and policy update method. The result shows that our
[Compliant Residual (CR)] policy trained with [On-Policy Delta] data
is able to improve upon base policies on both tasks and outperforms
other variations.

(demonstrator released the button), we ask the demonstrator
to keep holding the handle in place until the robot policy
takes over again, so as to minimize the motion jitter caused
by the switching.

e On-Policy Delta (Ours): the details are described in § II-A.

Policy update methods. We compare with two common

policy update methods: . .
e Retrain Policy: Retrain the base policy using both the

original training data and the correction data from scratch.

As explained in § II-B, this approach is reliable but may

require access to the orignal data and large amount of new

data to work well.
e Finetune Policy: Finetune the base policy using only the
correction data (freezing visual encoders). As explained in

§ II-B, this approach can be sensitive to data quality and

distribution shifts.

e Residual Policy: an ablation of our method where force is
removed from both input and outputs.
o Complaint Residual Policy (Ours): Residual policy update

with additional force input and outputs, see details in § II-B.
D. Key Findings

Finding 1: Compliant Residual Policy is able to improve
base policy by a large margin. As shown in Fig. 6, [Compliant
Residual] policy trained with [On-Policy Delta] data improves
the base policy success rate by 60% and 50% on the two tasks
respectively. It effectively learns useful corrective strategies
from the limited demonstrations. For example, in the book
flipping task, the policy learns to touch the fingers down in the
gap between the book and the shelf to increase the insertion
accuracy; in the belt assembly task, the policy learns to adjust
the height of the belt to thread it in the slot of the large
pulley when initially misaligned. Results are best viewed in
our supplementary video.

Finding 2: Residual policy allows additional useful
modality to be added during correction. Force provides
crucial information for contact-rich manipulation skills. [Com-
pliant Residual] policy performs significantly better than other
methods without force (45% higher success rate than the best
position-only baseline on the book task and 20% higher on the
belt task) as it can both take in force feedback that indicates
critical task information and predict adequate contact forces
to apply. For example, the second stage of the belt assembly
task (threading the belt on the large pulley) requires delicate
belt height adjustment based on its contact with the pulley,
where visual information is ambiguous due to occlusions and
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Fig. 7: Effect of Training Frequency and Sample. Single-batch
update (batch size=50) leads to more stable training and dense
sampling after correction starts achieves better performance.

the lack of depth. [Compliant Residual] policy exhibits reactive
height adjustment behaviors - when the gripper moves short
and touches the top of the pulley, the policy controls the gripper
to move out along the pulley to find the slot for the belt.

Finding 3: Smooth On-Policy Delta data enables stable
residual policy. [Compliant Residual] policy trained with [On-
Policy Delta] data has 45% and 30% higher success rates than
[Compliant Residual] & [Take-over-Correction] on the two
tasks respectively. Both residual policies trained with [Take-
over-Correction] data sometimes exhibit large noisy motions
that trigger task failures. On the contrary, residual policies
trained with [On-policy Delta] data have much smoother action
trajectories and better reflect human’s correction intentions,
providing suitable magnitudes of corrections.

Finding 4: Retraining base policy is stable but learns
correction behavior slowly. Retraining from scratch with the
initial and correction data together leads to policies with stable
motions. However, its behavior is less affected by the small
amount of correction data compared to the dominant portion
of initial data, leading to insignificant improvements over the
base policy (1.67% success rate drop on the book task and 5%
increase on the belt task, averaged across all data collection
methods).

Finding 5: Finetuning base policy is unstable. Policy
finetuning with either correction data has the worst performance
across all policy update methods and even underperforms the
base policy (30% success rate drop on the book task and
15% drop on the belt task, averaged across all data collection
methods). This is likely due to the distribution mismatch
between the base policy training distribution and correction
data distribution, causing training instabilities.

E. Ablations

We study two important design decisions with ablation
studies on the book flipping task.

Training frequency and batch size. One important param-
eter in DAgger is the batch size between policy updates. With
a smaller batch size, the policy is updated more frequently,
then new correction data can better reflect the most recent
policy distribution. However, DAgger with small batch sizes
is known to suffer from catastrophic forgetting [17, 18]
since it finetunes neural networks on data with non-stationary
distribution. Common solutions include retraining the residual
policy at the end of DAgger using all available correction
data collected from all the intermediate residual policies [6].



Another way is to rely on the base policy training data as
a normalizer [7]. In this work, we empirically found that a
much simpler method works the best: single-batch training,
i.e., we train the residual only once. All correction data is
obtained when only running the base policy. We compare our
single-batch (batch size = 50) DAgger with a small batch size
version, where we warm up the residual with 20 episodes of
initial correction data, then update every ten more episodes for
three times.

Finding: Single-batch DAgger is more suitable for training
Compliant Residual Policy. The small-batch training becomes
unstable and the demonstrator needs to provide large mag-
nitudes of corrections as the number of iterations increases.
During evaluation, the final policy always fails by inserting too
high, while our single-batch policy achieves a 100% success
rate with the same amount of data and training epochs.

Sampling strategy during training. The start of a human
intervention contains critical information of the timing and
direction of correction. Accurate delta action predictions right
after correction starts are important for reactive corrective
behaviors and staying in distribution. We investigate three
strategies for sampling from online correction data during
training: 1. Uniform sample, where the whole episode is
sampled uniformly. 2. Denser sample around the start of a
human intervention, and 3. denser sample only after the human
intervention starts. For 2 and 3, we uniformly increase the
sample frequency four times for a fixed period before and/or
after intervention starts.

Finding: Sampling denser right after intervention starts leads
to more reactive and accurate corrections. As shown in Fig. 7
(right), the best performance comes from densely sampling
after the beginning of interventions. Sampling denser around
the start of a human intervention also adds more samples right
before the intervention starts, which is where humans observe
signs of failures. These are mostly negative data, and using
them for training decreases the policy success rate.

IV. CONCLUSION AND DISCUSSION

In this work, we evaluate practical design choices for DAgger
in real-world robot learning, and provide a system, CR-DAgger,
to effectively collect human correction data with a Compliant
Intervention Interface and improve the base policy with a
Compliant Residual Policy. We demonstrate the effectiveness
of our designs by comparing them with a variety of alternatives
on two contact-rich manipulation tasks.

Limitations and Future Work. The base policy should
have a reasonable success rate for the residual policy to learn
effectively. From our experiments, we recommend starting to
collect correction data for the residual policy when the base
policy has at least 10% ~ 20% success rate. A future direction
is to derive theoretical guidelines for the trade-off between the
base and residual improvements.

Throughout this work, we use a MLP as the action head
of our Compliant Residual Policy and directly regress the
actions. Although it works well in our tasks, it may experience
difficulty for tasks that involve more distinctive action multi-

modalities. More expressive policy formulations, such as Flow
Matching [19, 20] might be useful for these tasks.
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