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Abstract—Preference-based reward learning is widely used for
shaping agent behavior to match a user’s preference, yet its sparse
binary feedback makes it especially vulnerable to causal confu-
sion. The learned reward often latches onto spurious features
that merely co-occur with preferred trajectories during training,
collapsing when those correlations disappear or reverse at test
time. We introduce ReCouPLe, a lightweight framework that
uses natural language rationales to provide the missing causal
signal. Each rationale is treated as a guiding projection axis in
embedding space, training the model to score trajectories based
on features aligned with that axis while de-emphasizing context
that is unrelated to the stated reason. Because identical rationales
can arise across multiple tasks (e.g., “it avoids collisions with a
fragile object”, “it correctly picks the tool I prefer”), ReCouPLe
naturally reuses the same causal direction whenever tasks share
semantics, and transfers preference knowledge to novel tasks
without extra data or language-model fine-tuning. Our learned
reward model can ground preferences on the articulated reason,
aligning better with user intent and generalizing beyond spurious
features.

I. INTRODUCTION

Designing reward functions that faithfully capture human
intent is one of the central obstacles to deploying learning
agents in the real world. Preference-based reinforcement learn-
ing (PbRL) removes the need for hand-crafted rewards by
asking a human which of two trajectories they prefer ([4, 2]).
Unfortunately, this binary feedback conveys at most a single
bit of information and leaves the reward model free to explain
the preference with any correlating feature in its observation
space. Under the presence of non-causal distractor features
that are spuriously correlated with preference labels, reward
models often learn to rely on such features. These features,
however, are irrelevant to the task success. When those cues
disappear or change at test time, the agent can suffer from
reward misidentification and fail to generalize [15]. Since
each comparison supplies at most one bit of information, it
leaves many causal explanations indistinguishable. Without
extra guidance, the learner cannot tell whether users prefer
a trajectory for its smoothness, its speed, or some spurious
cue in the background.

For example, suppose we want to train a robotic arm to
pick up a box large enough to store toys (Fig 1). During
data collection, every preference query shows a large red box
and a small blue box, and the annotator always prefers the
former. Because size and color are perfectly correlated in these
comparisons, a reward model can reach zero training error by
attending to the color cue instead of true size. At test time,
when it encounters a large blue box next to a small red box,
the learned reward could mistakenly favor the small red box.

A natural solution is to supply richer feedback. Prior
work has begun to augment pairwise comparisons with
natural-language descriptions of how two trajectories differ.
Following advancements in natural language processing, re-
cent works in robot learning employed language for task
planning [1, 13], policy learning [5, 6, 12], and reward
shaping [7]. Shi et al. [12] employ language-conditioned
behavior cloning (LCBC) for corrective language commands
and improving policies. Cui et al. [5] introduce an approach
to use human language feedback to correct robot manipulation
in real-time via shared autonomy. Dai et al. [6] propose a
data generation pipeline that automatically augments expert
demonstrations with failure recovery trajectories and fine-
grained language annotations for training recovery policies.
In the domain of preference learning, Yang et al. [16] learn a
shared latent space for trajectories and comparative language
like “move farther from the stove”, showing that language
can make reward learning faster and more intuitive. These
existing approaches treat language as an additional input to the
reward model, without exploiting its compositional structure
or underlying rationale. A recent work by Peng et al. [10] also
introduces an approach to incorporate feature-wise preference
learning framework to enrich the informative signals with
why an example is preferred. However, their study assumes
agents have access to structured, task-relevant features for
state abstraction, and their experiments are confined to a linear
bandit setting.

We claim that short natural language rationales carry
exactly the causal signal the model is missing. “I prefer
this trajectory because it avoids collisions” tells the learner
which feature matters for the user’s preference. We present
ReCouPLe (Reason-based Confusion Mitigation in Preference
Learning), a lightweight framework that treats each rationale
as a directional guide in a shared trajectory–language rep-
resentation space. We design a simple loss that encourages
the preference to be based on the direction of the reason
specified by the user, rather than on incidental correlations in
a pair of trajectories or other unspecified factors. The language
encoder remains frozen, retaining the same semantics across
tasks. Subsequently, this decoupling of reason components
enables us to exploit shared rationales appearing across tasks,
achieving a reward function that generalizes from one task to
another, potentially without any additional preference query.

In summary, our contributions are:
1) We observe that pairwise preferences can provide limited

information when non-causal distractor features exist,
which makes reward models vulnerable to causal con-
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Trajectory A Trajectory B

Fig. 1: Preference learning can be susceptible to causal confusion, especially with the presence of non-causal distractor features
that merely co-occur with preferred trajectories. In the example above, the reward model struggles to identify the exact feature
of a trajectory that determined user’s preference. By providing reasoning, the agent can identify the causal feature.

fusion. By augmenting each comparison with a natural
language rationale, we supply complementary causal cues
that help disambiguate the true preference signal.

2) We propose ReCouPLe, a projection-and-regularization
scheme that injects causal structure through language.

3) We show that adding a rationale to each comparison
yields transferable reward models that mitigate causal
confusion compared to other baselines.

II. PROBLEM DEFINITION

We consider a collection of tasks modeled as finite-horizon
Markov decision processes (MDPs) M = (S,A, P, r, γ, T ),
where S is the state space, A the action space, P (st+1 | st, at)
the transition kernel, r : S × A → R the reward function,
γ ∈ [0, 1) the discount factor, and T the maximum time
horizon. However, unlike standard RL, the reward function
r is unknown and it must be inferred from the user’s pairwise
preference feedback.

A. Reward Learning from Preference Data

We assume access to preference data in the form of binary
comparisons. Given a pair of trajectory segments (τA, τB) of
horizon H ≤ T , a human user provides preference label y:

y =

{
1 if τA ≻ τB ,

0 otherwise.

where τ = (s0, a0, . . . , sH , aH). Following the Bradley-Terry
model [3], the probability that the trajectory τA is preferred
over the trajectory τB is given by:

Pr(τA ≻ τB) =
exp(r(τA))

exp(r(τA)) + exp(r(τB))
(1)

In order to estimate the true reward, prior works in
preference-based RL train the reward function r̂ω : S×A → R
parameterized by ω by minimizing the binary cross-entropy
loss with the Bradley-Terry model:

LBT = −
∑
(A,B)

[yAB logPr̂ω (τA ≻ τB) +

(1− yAB) log(1− Pr̂ω (τA ≻ τB))] (2)

B. Language Interfaces

In addition to the standard MDP transitions, each task
comes with a task description ℓtask, a short sentence such
as “pick up the cup” or “push the cube.” We assume each task
language label should contain semantic information regarding
the corresponding task and it can imply the task’s reward
function. Additionally, each preference label has an optional
reason ℓreason that explains why one trajectory is preferred over
the other (e.g., “because it avoids collisions”). A frozen lan-
guage encoder LM maps these strings to fixed embeddings of
dimension d: θ = LM(ℓtask) ∈ Rd and ψ = LM(ℓreason) ∈ Rd.

III. METHODS

Preference-based reinforcement learning typically fits a
single-task reward by maximizing the likelihood of observed
comparisons (Eq. (1)). We extend this framework to the multi-
task setting, where each task is identified by its language



description. Specifically, we model the reward as the inner
product between the trajectory representation and the task
embedding:

r(τ, ℓtask) = ϕ(τ)⊤LM(ℓtask)

= ϕ(τ)⊤θ, (3)

where the trajectory encoder ϕ : τ → Rd is the only
trainable component, as the task embedding θ = LM(ℓtask)
is frozen (Sec. II-B). We use this reward formulation across
all methods for consistency. Although linear in structure, the
nonlinearity of both the trainable trajectory encoder and the
frozen language model allows this simple form to capture
complex, task-specific reward structures.

We study three methods that share the same multi-task
reward formulation but differ only in the loss terms used to
train the trajectory encoder ϕ:

• BT-Multi (baseline): Uses the standard Bradley–Terry
loss on the multi-task reward, without reasons.

• RFP (baseline): Adds an additional Bradley–Terry loss
on the reason–trajectory dot product.

• ReCouPLe (ours): Decomposes trajectory features into
reason-aligned and orthogonal components and regular-
izes them.

In our experiments, we use the pretrained T5 [11] language
model encoder as LM.

A. Multi-Task Bradley-Terry Baseline (BT-Multi)

The BT-Multi baseline learns ϕ by minimizing the binary
cross-entropy loss LBT (Eq. (2)) across all tasks, using the
shared reward definition above and ignoring the rationale
ℓreason. It therefore serves as the baseline without reason inputs.

B. Reason-Feature Preference Baseline (RFP)

Our RFP baseline follows Pragmatic Feature Preferences
(PFP) [10]. PFP assumes that each state can be represented by
an explicit, hand-designed feature vector. Humans (i) specify
which of those features are relevant to the task and (ii) give
pairwise labels that compare each relevant feature across two
items. The algorithm then fits a linear reward with a Bradley-
Terry (BT) loss for every feature-level comparison, as well as
for the trajectory-level comparison.

In our setting, such features do not exist. While PFP
relies on manually chosen task-relevant features that humans
compare one-by-one, we treat the frozen rationale embedding
ψ = LM(ℓreason) as a single implicit feature direction in the
representation space. Besides the shared reward r(τ, ℓtask) from
Eq. 3, we also define a reason score q:

q(τ, ℓreason) = ϕ(τ)⊤LM(ℓreason)

= ϕ(τ)⊤ψ.

Training minimizes the standard task BT loss from Eq. 2
(same as BT-Multi) and an additional auxiliary BT term for
the specified reason’s score, with its weight λq:

LRFP = LBT
(
rA, rB

)
+ λq LBT

(
qA, qB

)
,

where rA = r(τA, ℓtask) and qA = q(τA, ℓreason).

Limitations of RFP. RFP adds a reason score to better
reflect the rationale behind a preference, but it lacks two
structural safeguards.

• No built-in separation: It gives the model no explicit
signal to tell apart the dimensions that should explain the
stated reason from the rest of the embedding.

• No neutrality constrains: It offers no mechanism to keep
the leftover dimensions from sneaking into the preference
signal or to stop the whole trajectory embedding from
collapsing onto the reason direction.

Without these safeguards, the encoder can still ignore the task
vector θ, rely on incidental cues, and generalize poorly.

C. ReCouPLe

Key idea. A sentence such as “I prefer this path because
it avoids collisions” pinpoints the causal feature. ReCouPLe
treats the rationale embedding ψ as a projection axis, splitting
the trajectory representation into reason-aligned and reason-
orthogonal parts. See Fig 2 for a visualization.

Explicit geometric split. This projection induces two dis-
joint subspaces:

ϕ(τ) = ϕ∥(τ)︸ ︷︷ ︸
reason-aligned

+ ϕ⊥(τ)︸ ︷︷ ︸
reason-orthogonal

, ϕ⊤∥ϕ⊥ = 0,

which is achieved by

ϕ∥(τ) =
(ϕ(τ)⊤ψ

∥ψ∥22

)
ψ, ϕ⊥(τ) = ϕ(τ)− ϕ∥(τ)

Correspondingly, the reward term (Eq. 3) decomposes as

r(τ, ℓtask) = r∥(τ, ℓtask)︸ ︷︷ ︸
explained by rationale

+ r⊥(τ, ℓtask)︸ ︷︷ ︸
residual task signal

,

where
• r∥(τ, ℓtask) = ϕ⊤∥θ is the reason-aligned, causal compo-

nent explicitly justified by the user’s rationale;
• r⊥(τ, ℓtask) = ϕ⊤⊥θ is the orthogonal component that

captures any task-relevant information the rationale over-
looks (e.g., shaping rewards or domain priors) but is
prevented from influencing pairwise preferences by Re-
CouPLe’s orthogonal constraints.

By forcing reward differences to depend solely on r∥ while
holding r⊥ neutral, ReCouPLe grounds decisions in the stated
reason and prevents the model from relying on incidental
correlations.

Training losses. Given the decomposed reward, we train
our trajectory presentation by three reward terms:
1) Reason BT loss: BT loss LBT (Eq. (2)) on r∥ only,

enforcing that preferences are explained through the stated
causal feature.

2) Orthogonal consistency loss: Consistency loss ensuring
that the preference to be not explained by the reason-
orthogonal component. There are two variants for this term:
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Fig. 2: ReCouPle decomposes the task reward by orthogonally
projecting the trajectory representation to the reason language
embedding and decomposing the representation into reason-
aligned and reason-orthogonal components. This allows the
reward model to isolate the causal feature specified in the
rationale to explain the user’s preference, while preserving
auxiliary task-relevant signals that do not influence the pair-
wise preference in the orthogonal component.

a) ReCouPLe-EC: Equality constraint r⊥(τA, ℓtask) ≈
r⊥(τB , ℓtask) for every comparison, ensuring ϕ⊥ carries
no preference signal:

Leq =
(
r⊥(τA, ℓtask)− r⊥(τB , ℓtask)

)2
b) ReCouPLe-IC: Inequality (BT) constraint encourag-

ing the difference between r∥ is greater than r⊥:

Lineq = LBT

(
r∥(τA, ℓtask)− r∥(τB , ℓtask),

r⊥(τA, ℓtask)− r⊥(τB , ℓtask)
)

ReCouPLe-EC imposes a strict condition, requiring the
reason-orthogonal components to be identical for compared
trajectories. In contrast, ReCouPLe-IC is less restrictive,
incentivizing differences in the reason-aligned component
to dominate differences in total task rewards.

3) Reward-ratio regularizer Lratio for keeping the magnitude
of r∥ below a fraction α of the total reward magnitude (r∥+
r⊥), preventing trivial collapse into the causal subspace:
Lratio = ReLU

(
|r∥|

|r∥|+|r⊥|+ϵ − α
)

, where small constant ϵ
is included in the denominator to prevent division by zero.

The final objective is the following:

LReCouPLe=LBT(r∥)+λratioLratio+

{
λeqLeq (ReCouPLe-EC),
λineqLineq (ReCouPLe-IC).

IV. EXPERIMENTS

We evaluate ReCouPLe on two complementary suites that
probe distinct facets of the method. The first suite focuses on
causal robustness in a single visuomotor task whose visual
cues are deliberately confounded; the second investigates
cross-task generalization in a multi-task manipulation bench-
mark. Together they address two research questions:

• RQ1 (Robustness against causal confusion): Can ReCou-
PLe maintain preference accuracy when the covariate
distribution shifts in a way that exposes spurious cor-
relations?

• RQ2 (Task transfer): Does the reason-aligned subspace
learned on a small set of tasks transfer to novel tasks
without additional preference queries?

We test RQ1 with a set of custom ManiSkill environments for
visuomotor tasks where distribution shift in non-causal visual
features can easily yield causal confusion [9]. We assess RQ2
with a set of Meta-World [18] tasks that are widely used to
test few-shot/zero-shot transfer.

For both experiments, we let ϕ(τ) be the sum of per-step
state-action embeddings. We use a neural network encoder
e : S × A → Rd to encode every state-action pair of a
trajectory into the corresponding per-step embedding; we use a
convolutional encoder similar to DrQ-v2 [17] for the ManiSkill
visual control tasks and a fully-connected network for Meta-
world state-based control tasks.

A. ManiSkill Task Suite for RQ1

Task design. To test whether our proposed method can
mitigate causal confusion in preference-based learning, we
design a set of object manipulation tasks in ManiSkill [14] that
can easily induce causal confusion under distribution shifts.
Each scene has two cubes of different sizes on a tabletop,
and the agent must manipulate the larger cube. We have
4 total tasks: MS-Pick-Larger, MS-Push-Larger, MS-Place-
Larger, and MS-Pull-Larger. During training, the larger cube is
always a fixed color for each task, creating a perfect correlation
between color and the correct behavioral choice. For MS-Pick-
Larger and MS-Pull-Larger, the larger cube is always red and
the smaller cube is always blue. In contrast, for MS-Push-
Larger and MS-Place-Larger, the larger cube is always blue
and the smaller cube is always red. At test time we swap
the colors so that the distribution shift induces the classic
“shortcut” failure: a model that latches onto color will choose
the wrong object.

Data generation. We design motion planning solutions that
manipulate either the larger or the smaller cube for each task,
where initial cube poses are randomized. We then collect
500 synthetic preference queries for each task by pairing
trajectories that manipulate the larger and smaller cubes,
respectively. Each trajectory is randomly sub-sampled to a seg-
ment of length 64. The preference label selects the trajectory
handling the larger cube. The accompanying rationale ℓreason is
“(because) the cube is larger”. The task label ℓtask is simply
“[manipulating verb] the larger cube”.



TABLE I: Reward accuracy comparison for ManiSkill 2-task
setting (RQ1), averaged over 3 seeds.

Model In Distribution Color Swapped
Pick Push Pick Push

Single Task
BT (pick) 0.833 - 0.167 -
BT (push) - 1.000 - 0.610

Multi-Task
BT-Multi 0.870 0.999 0.167 0.673

Multi-Task with Reasons
RFP 0.847 0.990 0.290 0.813
ReCouPLe-EC (λratio = 0.2) 0.987 1.000 0.733 1.000
ReCouPLe-EC (λratio = 0.4) 0.980 1.000 0.707 0.987
ReCouPLe-IC (λratio = 0.2) 0.980 1.000 0.560 0.653
ReCouPLe-IC (λratio = 0.4) 0.940 1.000 0.433 0.927

Metric. After training a reward model, we evaluate the
model using preference accuracy, defined as the proportion of
held-out preference queries where the model correctly predicts
which of the two trajectories is preferred. We run evaluation
both on the in-distribution (ID) validation set and on the color-
swapped, out-of-distribution (OOD) set. We test baselines and
ReCouPLe on a 2-task setting with MS-Pick-Larger and MS-
Push-Larger tasks, and on a 4-task setting with all tasks.

B. Meta-World Task Suite for RQ2
Task design. We select three training tasks from Meta-

world: Pick-Place, Pick-Place-Wall, and Push-Wall. We re-
serve Push, a variant of Push-Wall task without a wall that
parallels the structural difference between Pick-Place and
Pick-Place-Wall. Each task’s ground-truth reward is linearly
decomposed into interpretable components (grasp, lift, colli-
sion avoidance waypoints, etc.) provided by the benchmark.

Data generation. We first collect trajectories by rolling out
policies with different levels of optimality and Gaussian noise,
similar to the data collection procedure in Hejna and Sadigh
[8]. Then, for each query, we randomly sample two trajectory
segments τA and τB and generate the preference label based
on their total reward

∑
i r(si, ai), where Meta-World’s pre-

defined environment reward can be linearly decomposed into
feature components {fj}: r(s, a) =

∑
j wjfj(s, a). Without

loss of generality, suppose τA is preferred over τB . Now,
we synthetically generate the reason label by computing
component-wise advantages ∆j = wj(fj(τA) − fj(τB)) and
convert them to a softmax-human distribution from which we
sample the reason behind the preference:

Pr(choose reason j) =
exp(∆j)∑
k exp(∆k)

Each sampled reason is a free-form sentence such as “keeps a
firm grasp while steering toward the goal.” We generate 4000
preference–rationale pairs for each training task (12000 total).

V. RESULTS

A. ManiSkill Task Suite for RQ1
Tables I and II summarize preference prediction accuracy

for all models before and after we swap the distracting color

cue that is perfectly correlated with object size during training.
Under the two-task setting, single-task BT baselines appear

competent while the training correlation holds (83.3% and
100%; in-distribution), yet their accuracy drops once the colors
are swapped (16.7% and 61.0%). Sharing visual features
across tasks with the multi-task baseline (BT-Multi) helps
Push-Larger but leaves Pick-Larger just as brittle (0.167).
Adding natural language rationales without our projection
(i.e., RFP) raises OOD accuracy only slightly, confirming
that naively adding the auxiliary BT term for reasons alone
provides an informative but insufficient signal. ReCouPLe
significantly improves its accuracy under distribution shift,
demonstrating its robustness against causal confusion. A sim-
ilar pattern persists for the four-task setting, yet overall per-
formances of all baselines and our method are significantly
improved as additional data across a more diverse set of tasks
provide better generalization signal.

For all tasks under different settings, ReCouPLe exhibits
highest out-of-distribution generalization performance. It per-
sistently outperforms the RFP baseline, showing how our
reason-guided reward decomposition method helps learn more
robust reward models against causal confusion, compared
to the simple addition of BT loss for reason features.

Another finding is that ReCouPLe with the equality con-
straint appears slightly more effective than the inequality
constraint variant. We hypothesize that this is a result of our
data collection scheme: for each task, both the preferred and
suboptimal trajectories are generated using motion planning
solutions that follow identical action sequences, differing only
in which cube (larger or smaller) is manipulated and its ran-
domized initial position. All other aspects of the trajectories,
such as path smoothness, timing, and waypoints, nearly remain
identical. Thus, the equality constraint for reason-orthogonal
reward components can provide stronger and more accurate
regularization.

Lastly, our method is robust against the λratio hyperpa-
rameter choices. We observe that values in [0.2, 0.4] do not
significantly affect the results, and are sufficient to prevent
embedding collapse.

B. Meta-World Task Suite for RQ2
Table III demonstrates preference prediction accuracy for

the Meta-World task suite, which assesses whether each
method can generalize to an unseen task that shares some
level of similarities with training tasks. In our experiment,
we evaluate its preference prediction accuracy on the held-out
Push preference dataset, as well as on the validation dataset
with training tasks.

We first observe that augmenting preference queries with
reasons improves task generalization. The RFP baseline
achieves better accuracy on the novel task (69.5%) compared
to the BT-Multi baseline, demonstrating that reason features
provide helpful signals that generalize across tasks with shared
features and semantics. However, ReCouPLe further improves
generalization performance, especially the ReCouPLe-IC vari-
ant, which achieves the highest accuracy (78.9%) on the



TABLE II: Reward accuracy comparison for ManiSkill 4-task setting (RQ1), averaged over 3 seeds.

Model In Distribution Color Swapped
Pick Push Place Pull Pick Push Place Pull

Single Task
BT (pick) 0.833 - - - 0.167 - - -
BT (push) - 1.000 - - - 0.610 - -
BT (place) - - 0.980 - - - 0.460 -
BT (pull) - - - 1.000 - - - 0.053

Multi-Task
BT-Multi 0.867 1.000 0.987 1.000 0.533 0.867 0.833 0.587

Multi-Task with Reasons
RFP 0.867 1.000 0.993 1.000 0.807 0.967 0.947 0.833
ReCouPLe-EC (λratio = 0.2) 0.993 1.000 0.993 1.000 0.960 1.000 1.000 0.973
ReCouPLe-EC (λratio = 0.2) 0.980 1.000 0.993 1.000 0.960 1.000 1.000 0.980
ReCouPLe-IC (λratio = 0.2) 0.973 1.000 1.000 1.000 0.940 1.000 0.993 0.987
ReCouPLe-IC (λratio = 0.4) 0.960 1.000 1.000 1.000 0.960 1.000 0.993 0.987

TABLE III: Reward accuracy comparison for Meta-world
setting (RQ2), averaged over 3 seeds.

Model Training Tasks Novel Task
Pick-Place Pick-Place-Wall Push-Wall Push

Single Task
BT (Pick-Place) 0.872 - - -
BT (Pick-Place-Wall) - 0.701 - -
BT (Push-Wall) - - 0.786 -

Multi-Task
BT-Multi 0.759 0.673 0.327 0.328

Multi-Task w/ Reasons
RFP 0.798 0.535 0.811 0.695
ReCouPLe-EC 0.719 0.678 0.770 0.718
ReCouPLe-IC 0.808 0.653 0.860 0.789

unseen Push task. This supports our hypothesis that project-
ing and regularizing preference explanations through causal
directions allows the model to transfer reward structure more
effectively.

Among our variants for orthogonal consistency loss,
ReCouPLe-IC mostly outperforms ReCouPLe-EC in both in-
distribution and novel tasks, only excluding Pick-Place-Wall
tasks. Unlike our ManiSkill experiment, in which preference
queries consist of a pair of trajectories with a minimal dif-
ference in features other than the stated reasons, datasets in
Meta-World contain noisy trajectories with different levels of
optimality. Also, each query has a different reason behind its
preference. Thus, it is less realistic to assume that reason-
orthogonal components should remain identical across com-
pared trajectories. In this setting, the strict equality constraint
enforced by ReCouPLe-EC may overly penalize legitimate
differences unrelated to the stated reason, thereby harming
its performance. As shown in its performance, this makes
ReCouPLe-IC more suited for real-world, noisy datasets with
diverse reasons behind preferences.

VI. CONCLUSION AND FUTURE WORK

We introduced ReCouPLe, a lightweight yet powerful
framework that turns free-form natural language rationales into

causal projection axes for preference-based reward learning.
Across two complementary evaluations, ReCouPLe consis-
tently mitigated causal confusion and exhibited strong zero-
shot transfer to novel tasks where prior methods collapsed.
These findings support two core takeaways:

1) Causally robust preference learning with rationale.
Attaching a one-sentence rationale to each comparison
supplies the missing causal signal, enabling the model to
ground preferences in task-relevant features rather than
incidental correlations. Our proposed method, ReCouPLe,
uses the rationale as a guiding projection direction to
separate out the part of the trajectory that explains the
preference, ensuring the model focuses on the feature
that actually matters. This leads to more robust preference
learning under distribution shifts.

2) Compositional rewards transfer across tasks. Since
the same reason can arise in multiple tasks, ReCouPLe
leverages shared causal structure to transfer reward sig-
nals without additional preference data or language model
fine-tuning.

Future directions. Our current work focuses on reward
inference. A natural next step is to close the loop by training
policies with our learned reward model with ReCouPLe. This
would allow end-to-end evaluation in more complex manip-
ulation tasks, both in simulation and in real-world settings.
Another promising direction is to extend ReCouPLe to dialog-
style rationales which could support more nuanced forms of
causal supervision. Lastly, future work will also explore active
querying strategies that can selectively query for a rationale
only when causal uncertainty is high, improving data efficiency
and human alignment.
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